Advertisement

Hydrobiologia

, Volume 694, Issue 1, pp 197–204 | Cite as

Waterbird-mediated passive dispersal of river shrimp Athyaephyra desmaresti

  • Filipe BanhaEmail author
  • Pedro Manuel Anastácio
Primary Research Paper

Abstract

The river shrimp Athyaephyra desmaresti is a Mediterranean species which in recent years expanded its distribution, colonizing rivers of central Europe. The purpose of this study was to investigate the possibility of passive external dispersal of the river shrimp Athyaephyra desmaresti by waterfowl. We performed experiments testing shrimp desiccation survival, probability of attachment to waterfowl, and probability of successful transport. We found that in the laboratory 10% of the river shrimps can survive out of water for up to 90.1 min, but this period was reduced to 18.5 min under simulated bird flight conditions. Two different outdoor experiments simulating bird flight conditions indicated a 50% probability of successful transport on flight distances over 15 km. Our results using dead ducks show evidence that small, large or ovigerous river shrimps can attach to and be transported by ducks and that this capacity is affected by water depth. This study demonstrated that waterbird-mediated passive dispersal of river shrimps can occur and may be important for genetic flows between populations and for the colonization of new sites.

Keywords

Athyaephyra desmaresti Passive dispersal Waterfowl Desiccation 

Notes

Acknowledgments

This study was partially financed by FEDER funds through the “Programa Operacional de Factores de Competitividade – COMPETE” and by national funds through “FCT – Fundação para a Ciência e Tecnologia” on the scope of the project DID (Dispersal of Invasive Decapoda) (PTDC/BIA-BEC/105182/2008). All experiments were performed in accordance with the Portuguese law and no vertebrates were harmed or stressed during the experiments.

References

  1. Banha, F. & P. M. Anastácio, 2011. Interactions between invasive crayfish and native river shrimp. Knowledge and Management of Aquatic Ecosystems 401: 17.Google Scholar
  2. Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.CrossRefGoogle Scholar
  3. Boag, D., 1986. Dispersal in pond snails: potential role of waterfowl. Canadian Journal of Zoology 64: 904–909.CrossRefGoogle Scholar
  4. Bohonak, A. & D. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  5. Brochet, A. L., M. Guillemain, H. Fritz, M. Gauthier-Clerc, A. Waterkeyn, Á. Baltanás & A. J. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.CrossRefGoogle Scholar
  6. Cáceres, C. E. & D. D. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.CrossRefGoogle Scholar
  7. Colautti, R. I., M. Manca, M. Viljanen, H. A. M. Ketelaars, H. Burgi, J. Macisaac & D. D. Heath, 2005. Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Molecular Ecology 14: 1869–1879.PubMedCrossRefGoogle Scholar
  8. Darwin, C., 1859. On the origin of species by means of natural selection. Murray, London.Google Scholar
  9. Fidalgo, M. L., 1990. Biology of the freshwater shrimp Atyaephyra desmarestii Millet (Decapoda: Natantia) in the river Douro, Portugal. II: feeding rate and assimilation efficiency. Publicações do Instituto de Zoologia “Dr. Augusto Nobre” 223: 1–19.Google Scholar
  10. Fidalgo, M. L. & A. Gerhardt, 2002. Distribution of the freshwater shrimp, Atyaephyra desmarestii (Millet, 1831) in Portugal (Decapoda, Natantia). Crustaceana 75: 1375–1385.CrossRefGoogle Scholar
  11. Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.CrossRefGoogle Scholar
  12. Figuerola, J., A. J. Green & T. C. Michot, 2005. Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. The American Naturalist 162: 274–280.CrossRefGoogle Scholar
  13. Galhano, M. H., 1979. Seasonal changes in Atyaephyra desmaresti Millet (Decapoda Natantia). Publicações do Instituto de Zoologia “Dr. Augusto Nobre” 145: 11–26.Google Scholar
  14. García-Berthou, E., 2001. Size and depth-dependent variation in habitat and diet of the common carp (Cyprinus carpio). Aquatic Sciences 63: 466–476.CrossRefGoogle Scholar
  15. García-Berthou, E., 2002. Ontogenic diet shifts and interrupted piscivory in introduced largemouth bass (Micropterus salmoides). International Review of Hydrobiology 87: 353–363.CrossRefGoogle Scholar
  16. García-Berthou, E. & R. Moreno Amich, 2000a. Food of introduced pumpkinseed sunfish: ontogenetic diet shift and seasonal variation. Journal of Fish Biology 57: 29–40.CrossRefGoogle Scholar
  17. García-Berthou, E. & R. Moreno Amich, 2000b. Rudd (Scardinius erythrophtalmus) introduced to the Iberian Peninsula: feeding ecology in Lake Banyoles. Hydrobiologia 436: 159–164.CrossRefGoogle Scholar
  18. Green, A. J. & J. Figuerola, 2005. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Diversity and Distributions 11: 149–156.CrossRefGoogle Scholar
  19. Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.CrossRefGoogle Scholar
  20. Hogg, I. D., J. M. Eadie & Y. De Lafontaine, 1998. Atmospheric change and the diversity of aquatic invertebrates: are we missing the boat? Environmental Monitoring and Assessment 49: 291–301.CrossRefGoogle Scholar
  21. Johnson, L. E. & D. K. Padilla, 1996. Geographic spread of exotic species: ecological lessons and opportunities from the invasion of the zebra mussel Dreissena polymorpha. Biological Conservation 78: 23–33.CrossRefGoogle Scholar
  22. Maguire, B. J., 1959. Passive overland transport of small aquatic organisms. Ecology 40: 312.CrossRefGoogle Scholar
  23. Maguire, B. J., 1963. The passive dispersal of small aquatic organisms and their colonisation of isolated bodies of water. Ecological Monographs 33: 161–185.CrossRefGoogle Scholar
  24. Makarewicz, J. C., I. A. Grigorovich & E. Mills, 2001. Distribution fecundity and genetics of Cercopagis pengoi (Ostroumov) (Crustacea. Cladocera) in Lake Ontario. Journal of Great Lakes Research 27: 19–32.CrossRefGoogle Scholar
  25. Mayr, E., 1963. Animal species and evolution. Belknap Press of Harvard University Press, Cambridge.Google Scholar
  26. Meurisse-Génin, M., A. Reydams-Detollenaere, O. Donatti & J. C. Micha, 1985. Caractéristiques biologiques de la crevette d’eau douce Atyaephyra desmaresti Millet dans la Meuse. Annales de Limnologie 21: 127–140.CrossRefGoogle Scholar
  27. Moreira, F., 1999. On the use by birds of intertidal areas of the Tagus estuary: implications for management. Aquatic Ecology 33: 301–309.CrossRefGoogle Scholar
  28. Pöysä, H., 1983. Morphology-mediated niche organization in guild of dabbling ducks. Ornis Scandinavica 14: 317–326.CrossRefGoogle Scholar
  29. Rosine, W. N., 1956. On the transport of the common amphipod, Hyalella azteca, in South Dakota by the mallard duck. Proceedings of the South Dakota Academy of Science 35: 203.Google Scholar
  30. Segerstråle, S. G., 1954. The freshwater amphipods Gammarus pulex (L.) and Gammarus lacustris (Sars) in Denmark and Fennoscandia – a contribution to the late and post-glacial immigration history of the aquatic fauna of northern Europe. Societas Scientiarum Fennica Commentationes Biologicae 15: 1–91.Google Scholar
  31. Swanson, G. A., 1984. Dissemination of amphipods by waterfowl. Journal of Wildlife Management 48: 988–991.CrossRefGoogle Scholar
  32. Tittizer, T., 1996. Main Donau Canal now a short cut for fauna. Danube Watch 2: 7–8.Google Scholar
  33. Tittizer, T., F. Schöll, A. Banning, A. Haybach & M. Schleuter, 2000. Aquatische neozoen im makrozoobenthos der Binnenwasserstraßen en Deutchlands. Lauterbornia 39: 1–72.Google Scholar
  34. Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31: 567–577.CrossRefGoogle Scholar
  35. Vos, C. C., A. G. Antonisse-De Jong, P. W. Goedhart & M. J. M. Smulders, 2001. Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86: 598–608.PubMedCrossRefGoogle Scholar
  36. Waterkeyn, A., O. Pineau, P. Grillas & L. Brendonck, 2010. Invertebrate dispersal by aquatic mammals: a case study with nutria Myocastor coypus (Rodentia, Mammalia) in Southern France. Hydrobiologia 654: 267–271.CrossRefGoogle Scholar
  37. Welham, C. V. J., 1994. Flight speeds of migrating birds: a test of maximum range speed predictions from the aerodynamic equations. Behavioral Ecology 5: 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.IMAR – Centro de Mar e Ambiente, c/o. Departamento de Paisagem, Ambiente e OrdenamentoUniversidade de ÉvoraÉvoraPortugal

Personalised recommendations