, Volume 699, Issue 1, pp 85–98 | Cite as

Patterns of benthic oxygen uptake in a hypertrophic lagoon: spatial variability and controlling factors

  • M. Zilius
  • M. Bartoli
  • D. Daunys
  • R. Pilkaityte
  • A. Razinkovas


Water temperature, organic matter quality and quantity and macrofauna activity generally regulate the seasonal evolution of benthic oxygen uptake in coastal areas. We hypothesize that highly productive lagoons can represent an exception in this respect, due to alternating sequences of phytoplankton bloom, dystrophy and collapse events, coupled with water anoxia and azoic sediments. In order to verify this assumption, total oxygen uptake (TOU) and diffusive oxygen uptake (DOU) were determined during the ice-free period of 2009 in the sediments of a hypertrophic basin (the Curonian Lagoon, Baltic Sea). Seasonal measurements were carried out via sediment incubation and microprofiling in littoral and pelagic areas. TOU increased from spring to summer, but it remained elevated also in autumn likely due to accumulation of labile organic matter after algal blooms. TOU and DOU closely agreed in pelagic areas, while at littoral sites TOU exceeded DOU, suggesting temporal or local importance of bioturbating organisms. Water chlorophyll a and oxygen saturation were likely the most important driving factors for benthic respiration. Very limited oxygen penetration (<1 mm) over a 6-month period possibly enhances nitrogen removal via denitrification and reactive phosphorus efflux.


Sediment O2 uptake Core incubation Microprofiles Curonian Lagoon 



We thank two anonymous reviewers for valuable comments and suggestions. We also gratefully thank Daniele Nizzoli, Daniele Longhi and Tomas Ruginis for their help during field sampling and laboratory experiments. This study was financially supported by BONUS ERA-NET PLUS project AMBER.


  1. Aller, R. C., 1998. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structure. In Blackburn, T. H. & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments. John Wiley & Sons Ltd, Chichester: 301–338.Google Scholar
  2. Banta, G. T., A. E. Giblin, J. E. Hobble & J. Tucker, 1995. Benthic respiration and nitrogen release in Buzzards Bay, Massachusetts. Journal of Marine Research 53: 107–135.CrossRefGoogle Scholar
  3. Barranguet, C., M.-R. Plante-Cuny & E. Alivon, 1996. Microphytobenthos production in the Gulf of Fos, French Mediterranean coast. Hydrobiologia 333: 181–193.CrossRefGoogle Scholar
  4. Bartoli, M., D. Longhi, D. Nizzoli, S. Como, P. Magni & P. Viaroli, 2009. Short term effects of hypoxia and bioturbation on solute fluxes, denitrification and buffering capacity in a shallow dystrophic pond. Journal of Experimental Marine Biology and Ecology 381: 105–113.CrossRefGoogle Scholar
  5. Beutler, M., K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen & H. Dau, 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research 72: 39–53.PubMedCrossRefGoogle Scholar
  6. Bresciani, M., C. Giardino, D. Stroppiana, R. Pilkaitytė, M. Zilius, M. Bartoli & A. Razinkovas, 2012. Retrospective analysis of spatial and temporal variability of chlorophyll-a in the Curonian Lagoon. Journal of Coastal Conservation. doi:  10.1007/s11852-012-0192-5.
  7. Broecker, W. S. & T. H. Peng, 1974. Gas exchange rates between air and sea. Tellus 26: 21–35.CrossRefGoogle Scholar
  8. Cai, W.-J. & C. Reimers, 1995. Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep-Sea Research I 42: 1681–1699.CrossRefGoogle Scholar
  9. Canfield, D. E., B. B. Jørgensen, H. Fossing, R. N. Glud, J. K. Gundersen, B. Thamdrup, J. W. Hansen, L. P. Nielsen & P. O. J. Hall, 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113: 27–40.PubMedCrossRefGoogle Scholar
  10. Christensen, P. B., L. P. Nielsen, J. Sørensen & N. P. Revsbech, 1990. Denitrification in nitrate-rich streams: diurnal and seasonal variation related to benthic oxygen metabolism. Limnology and Oceanography 35: 640–651.CrossRefGoogle Scholar
  11. Conley, D., J. Carstensen, R. Vaquer-Sunyer & C. M. Duarte, 2009. Ecosystem thresholds with hypoxia. Hydrobiologia 629: 21–29.CrossRefGoogle Scholar
  12. Daunys, D., 2001. Patterns of the Bottom Macrofauna Variability and Its Role in the Shallow Coastal Lagoon. Summary of PhD dissertation, Klaipėda University, Klaipėda.Google Scholar
  13. Daunys, D., S. Olenin & D. Schiedek, 2000. Species strategy near its boundary: the Marenzelleria cf. viridis (Polychaeta, Annelida) case in the brackish Baltic Sea. International Review of Hydrobiology 85(5–6): 639–652.CrossRefGoogle Scholar
  14. De Wit, R., L. J. Stal, B. Aa. Lomstein, R. A. Herbert, H. van Gemerden, P. Viaroli, V.-U. Cecherelli, F. Rodríguez-Valera, M. Bartoli, G. Giordani, R. Azzoni, B. Schaub, D. T. Welsh, A. Donnelly, A. Cifuentes, J. Antón, K. Finster, L. B. Nielsen, A.-G. Underlien Pedersen, A. T. Neubauer, M. A. Colangelo & S. K. Heijs, 2001. ROBUST: the ROle of BUffering capacities in STabilising coastal lagoon ecosystems. Continental Shelf Research 21: 2021–2041.CrossRefGoogle Scholar
  15. Enoksson, V. & M.-O. Samuelsson, 1987. Nitrification and dissimilatory ammonium production and their effects on nitrogen flux over the sediment-water interface in bioturbated coastal sediments. Marine Ecology Progress Series 36: 181–189.CrossRefGoogle Scholar
  16. Eyre, B. D. & A. J. P. Ferguson, 2005. Benthic metabolism and nitrogen cycling in a sub-tropical east Australian estuary (Brunswick) – temporal variability and controlling factors. Limnology and Oceanography 50: 81–96.CrossRefGoogle Scholar
  17. Ferrarin, C., A. Razinkovas, S. Gulbinskas, G. Umgiesser & L. Bliūdžiutė, 2008. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 611: 133–146.CrossRefGoogle Scholar
  18. Galkus, A., 2004. Peculiarities of sedimentary environment of most polluted bottom sediments in the Lithuanian waters of Curonian Lagoon. The Geographical Yearbook 37: 84–94.Google Scholar
  19. Gasiūnaitė, Z. R., D. Daunys, S. Olenin & A. Razinkovas, 2008. The Curonian Lagoon. In: Schiewer, U. (ed), Ecology of Baltic Coastal Waters. Ecological Studies. Springer, Berlin, pp. 197–215.Google Scholar
  20. Giordani, G., M. Bartoli, M. Cattadori & P. Viaroli, 1996. Sulphide release from anoxic sediments in relation to iron availability and organic matter recalcitrance and its effects on inorganic phosphorus recycling. Hydrobiologia 329: 211–222.CrossRefGoogle Scholar
  21. Glud, R. N., J. K. Gundersen, H. Røy & B. B. Jørgsensen, 2003. Seasonal dynamics of benthic O2 uptake in a semienclosed bay: importance of diffusion and faunal activity. Limnology and Oceanography 48: 1265–1276.CrossRefGoogle Scholar
  22. Graf, G., W. Bengtsson, U. Diesner, R. Schultz & H. Theede, 1982. Benthic response to sedimentation of a spring phytoplankton bloom. Process and budget. Marine Biology 67: 201–208.CrossRefGoogle Scholar
  23. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis, 2nd ed. Verlag Chemie, Berlin.Google Scholar
  24. Hartnett, H. E., R. G. Keil, J. I. Hedges & A. H. Devol, 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391: 572–574.CrossRefGoogle Scholar
  25. Iversen, N. & B. B. Jørgensen, 1993. Diffusion coefficients of sulfate and methane in marine sediments: influence of porosity. Geochimica et Cosmochimica Acta 57: 571–578.CrossRefGoogle Scholar
  26. Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologia 109: 445–454.Google Scholar
  27. Jørgensen, B. B., 1996. Material flux in the sediment. In Jørgensen, B. B. & K. Richardson (eds), Eutrophication in Coastal Marine Ecosystems. American Geophysical Union, Washington, DC: 36–115.CrossRefGoogle Scholar
  28. Jørgensen, B. B. & J. Sørensen, 1985. Seasonal cycles of O2, NO3 and SO4 2− reduction in estuarine sediments: the significance of an NO3 reduction maximum in spring. Marine Ecology Progress Series 24: 65–74.CrossRefGoogle Scholar
  29. Jurgelenaite, D. & A. Sarauskiene, 2007. The impact of Klaipėda strait permeability on the process of sea water inflow into Curonian Lagoon. Environmental Research, Engineering and Management 53: 52–56.Google Scholar
  30. Kemp, W. M., P. A. Sampou, J. Garber, J. Tuttle & W. R. Boynton, 1992. Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Marine Ecology Progress Series 85: 137–152.CrossRefGoogle Scholar
  31. Köster, M., S. Dahlke & L.-A. Myer-Reil, 2005. Microbial colonization and activity in relation to organic carbon in sediments of hypertrophic coastal waters (Nordrügensche Bodden, Southern Baltic Sea). Aquatic Microbial Ecology 39: 69–83.CrossRefGoogle Scholar
  32. Li, Y. H. & S. Gregory, 1974. Diffusion of ions in deep-sea sediments. Geochimica Cosmochimica Acta 38: 703–714.CrossRefGoogle Scholar
  33. Llanso, R. J., 1992. Effects of hypoxia on estuarine benthos: the lower Rappahannock River (Chesapeake Bay), a case study. Estuarine, Coastal and Shelf Science 35: 491–515.CrossRefGoogle Scholar
  34. Lorenzen, C. J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.CrossRefGoogle Scholar
  35. Lorenzen, J., L. H. Larsen, T. Kjær & N. P. Revsbech, 1998. Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sediment. Applied and Environmental Microbiology 64(9): 3264–3269.PubMedGoogle Scholar
  36. Mažeika, J., R. Paškauskas & J. Taminskas, 2008. 210Pb and 137Cs – indicators for sediment age assessment in the Curonian Lagoon. In: Proceedings of “Coastal research”. Klaipėda University, Klaipėda (in Lithuanian).Google Scholar
  37. Middelburg, J. J., Ch. Barranguet, H. T. S. Boschker, P. M. J. Herman, T. Moens & C. H. R. Heip, 2000. The fate of intertidal microphythobenthos carbon: an in situ 13C-labeling study. Limnology and Oceanography 45: 1224–1234.CrossRefGoogle Scholar
  38. Nedwell, D. B., S.-E. Hall, A. Andersson, A. F. Hagström & E. B. Lindström, 1983. Seasonal changes in the distribution and exchange of inorganic nitrogen between sediment and water in the northern Baltic (Gulf of Bothnia). Estuarine, Coastal and Shelf Science 17: 169–179.CrossRefGoogle Scholar
  39. Nielsen, L. P., P. B. Christensen, N. P. Revsbech & J. Sørensen, 1990. Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microbial Ecology 19: 63–72.CrossRefGoogle Scholar
  40. Nizzoli, D., M. Bartoli, M. Cooper, G. Underwood & P. Viaroli, 2007. Implications for oxygen and nutrient fluxes and denitrification rates during sediment colonisation by the polychaete Nereis spp. in four estuaries. Estuarine, Coastal and Shelf Science 75: 125–134.CrossRefGoogle Scholar
  41. Pilkaitytė, R., 2003. Phytoplankton Seasonal Succession and Abundance in the Eutrophic Estuarine Lagoons. Summary of Doctoral Dissertation, Klaipėda University, Klaipėda.Google Scholar
  42. Pilkaitytė, R. & A. Razinkovas, 2006. Factors controlling phytoplankton blooms in a temperate estuary: nutrient limitation and physical forcing. Hydrobiologia 555: 41–48.CrossRefGoogle Scholar
  43. Pilkaitytė, R. & A. Razinkovas, 2007. Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic lagoon. Boreal Environmental Research 12: 551–559.Google Scholar
  44. Pusceddu, A., A. Dell’Anno, M. Fabiano & R. Danovaro, 2009. Quantity and bioavailability of sediment organic matter as complementary signatures of benthic trophic status. Marine Ecology Progress Series 375: 41–52.CrossRefGoogle Scholar
  45. Pustelnikovas, O., 1998. Geochemistry of Sediments of the Curonian Lagoon (Baltic Sea). Institute of Geography, Vilnius.Google Scholar
  46. Rasmussen, H. & B. B. Jorgensen, 1992. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Marine Ecology Progress Series 81: 289–303.CrossRefGoogle Scholar
  47. Revsbech, N. P., 1989. An oxygen microsensor with a guard cathode. Limnology and Oceanography 34: 474–478.CrossRefGoogle Scholar
  48. Revsbech, N. P., J. Sørensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnology and Oceanography 25: 403–411.CrossRefGoogle Scholar
  49. Risgaard-Petersen, N., 2003. Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: on influence of benthic microalgae. Limnology and Oceanography 48: 93–105.CrossRefGoogle Scholar
  50. Roden, E. E. & J. W. Edmonds, 1997. Phosphate mobility in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 139: 347–378.Google Scholar
  51. Rysgaard, S., P. B. Christensen & L. P. Nielsen, 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonised by benthic microalgae and bioturbating in fauna. Marine Ecology Progress Series 126: 111–121.CrossRefGoogle Scholar
  52. Shaw, T. J., J. M. Gieskes & R. A. Jahnke, 1990. Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochimica Cosmochimica Acta 54: 1233–1246.CrossRefGoogle Scholar
  53. Sundbäck, K., A. Miles, S. Hulth, L. Pihl, P. Engström, E. Selander & A. Svenson, 2003. Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays. Marine Ecology Progress Series 246: 115–126.CrossRefGoogle Scholar
  54. Svensson, J. M. & L. Leonardson, 1996. Effects of bioturbation by tube-dwelling chironomid larvae on oxygen uptake and denitrification in eutrophic lake sediments. Freshwater Biology 35: 289–300.CrossRefGoogle Scholar
  55. Thamdrup, B., J. W. Hansen & B. B. Jørgensen, 1998. Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiology Ecology 25: 189–200.Google Scholar
  56. Vahtera, E., D. Conley, B. Gustafsson, H. Kuosa, H. Pitkänen, O. Savchuk, T. Tamminen, M. Viitasalo, M. Voss, N. Wasmund & F. Wulff, 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36: 1–10.CrossRefGoogle Scholar
  57. Westman, P., J. Borgendahl, T. S. Bianchi & N. Chen, 2003. Probable causes for cyanobacterial expansion in the baltic sea: role of anoxia and phosphorus retention. Estuaries 26: 680–689.CrossRefGoogle Scholar
  58. Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing Ecological Data. Statistics for Biology and Health. Springer Science + Business Media, New York: 672.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Zilius
    • 1
  • M. Bartoli
    • 2
  • D. Daunys
    • 1
  • R. Pilkaityte
    • 1
  • A. Razinkovas
    • 1
  1. 1.Coastal Research and Planning InstituteKlaipeda UniversityKlaipedaLithuania
  2. 2.Department of Environmental SciencesParma UniversityParmaItaly

Personalised recommendations