, Volume 698, Issue 1, pp 5–16 | Cite as

Phytoplankton response to a changing climate

  • Monika WinderEmail author
  • Ulrich Sommer


Phytoplankton are at the base of aquatic food webs and of global importance for ecosystem functioning and services. The dynamics of these photosynthetic cells are linked to annual fluctuations of temperature, water column mixing, resource availability, and consumption. Climate can modify these environmental factors and alter phytoplankton structure, seasonal dynamics, and taxonomic composition. Here, we review mechanistic links between climate alterations and factors limiting primary production, and highlight studies where climate change has had a clear impact on phytoplankton processes. Climate affects phytoplankton both directly through physiology and indirectly by changing water column stratification and resource availability, mainly nutrients and light, or intensified grazing by heterotrophs. These modifications affect various phytoplankton processes, and a widespread advance in phytoplankton spring bloom timing and changing bloom magnitudes have both been observed. Climate warming also affects phytoplankton species composition and size structure, and favors species traits best adapted to changing conditions associated with climate change. Shifts in phytoplankton can have far-reaching consequences for ecosystem structure and functioning. An improved understanding of the mechanistic links between climate and phytoplankton dynamics is important for predicting climate change impacts on aquatic ecosystems.


Light Water column stratification Temperature Phenology Primary production Cell size 



This work was supported by the DFG (Deutsche Forschungsgemeinschaft) within the priority program 1162 “AQUASHIFT” (The impact of climate variability on aquatic ecosystems).


  1. Adrian, R., S. Wilhelm & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12(4): 652–661.CrossRefGoogle Scholar
  2. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.PubMedCrossRefGoogle Scholar
  3. Alheit, J., C. Mollmann, J. Dutz, G. Kornilovs, P. Loewe, V. Mohrholz & N. Wasmund, 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science 62: 1205–1215.CrossRefGoogle Scholar
  4. Allen, A. P., J. F. Gillooly & J. H. Brown, 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19: 202–213.CrossRefGoogle Scholar
  5. Behrenfeld, M. J., R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. Falkowski, R. M. Letelier & E. S. Boss, 2006. Climate-driven trends in contemporary ocean productivity. Nature 444: 752–755.PubMedCrossRefGoogle Scholar
  6. Berger, S. A., S. Diehl, H. Stibor, G. Trommer, M. Ruhenstroth, C. Jäger & M. Striebel, 2007. Water temperature and mixing depth affect timing and intensity of events during spring succession of the plankton. Oecologia 150: 643–654.PubMedCrossRefGoogle Scholar
  7. Berger, S. A., S. Diehl, H. Stibor, G. Trommer & M. Ruhenstroth, 2010. Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Global Change Biology 7: 1954–1965.CrossRefGoogle Scholar
  8. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Jarvinen, C. N. Aonghusa, T. Noges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13(7): 1314–1326.CrossRefGoogle Scholar
  9. Bopp, L., O. Aumont, P. Cadule, S. Alvain & M. Gehlen, 2005. Response of diatoms distribution to global warming and potential implications: a global model study. Geophysical Research Letters 32: L19606.CrossRefGoogle Scholar
  10. Boyce, D. G., M. R. Lewis & B. Worm, 2010. Global phytoplankton decline over the past century. Nature 446: 591–596.CrossRefGoogle Scholar
  11. Boyd, P. W. & S. C. Doney, 2002. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters 29(16): 53–56.CrossRefGoogle Scholar
  12. Briceño, H. O. & J. N. Boyer, 2010. Climatic controls on phytoplankton biomass in a sub-tropical estuary, Florida Bay, USA. Estuaries Coasts 33: 541–553.CrossRefGoogle Scholar
  13. Burckle, L. H., N. J. Shackleton & S. L. Bromble, 1981. Late Quaternary stratigraphy for the equatorial Pacific based upon the diatom Coscinodiscus-nodulifer. Micropaleontology 27(4): 352–355.CrossRefGoogle Scholar
  14. Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71(2): 163–186.CrossRefGoogle Scholar
  15. Cloern, J. E., 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34(2): 127–168.CrossRefGoogle Scholar
  16. Cloern, J. E., A. D. Jassby, J. K. Thompson & K. A. Hieb, 2007. A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proceedings of the National Academy of Sciences of the United States of America 104(47): 18561–18565.PubMedCrossRefGoogle Scholar
  17. Cushing, D. H., 1974. Sea Fisheries Research. Wiley, New York.Google Scholar
  18. Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073pnas.0902080106.
  19. De Senerpont Domis, L. N., W. M. Mooij, S. Hulsmann, E. H. van Nes & M. Scheffer, 2007. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions? Oecologia 150(4): 682–698.PubMedCrossRefGoogle Scholar
  20. Dewar, R. C., B. E. Bedlyn & R. E. McMurtrie, 1999. Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biology 5: 615–622.CrossRefGoogle Scholar
  21. Diehl, S., S. Berger, R. Ptacnik & A. Wild, 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83: 399–411.CrossRefGoogle Scholar
  22. Edwards, M. & A. J. Richardson, 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884.PubMedCrossRefGoogle Scholar
  23. Falkowski, P. G. & M. J. Oliver, 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5(10): 813–819.PubMedCrossRefGoogle Scholar
  24. Fee, E. J., 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Areas, northwestern Ontario: implications for primary production estimates. Limnology and Oceanography 21: 767–783.CrossRefGoogle Scholar
  25. Field, C. B., M. J. Behrenfeld, J. T. Randerson & P. Falkowski, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–242.PubMedCrossRefGoogle Scholar
  26. Findlay, D. L., S. E. M. Kasian, M. P. Stainton, K. Beaty & M. Lyng, 2001. Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnology and Oceanography 46: 1784–1793.CrossRefGoogle Scholar
  27. Finkel, Z. V., M. E. Katz, J. D. Wright, O. M. E. Schofield & P. G. Falkowski, 2005. Climatically driven macroevolutionary patterns in the size of marine diatoms over the cenozoic. Proceedings of the National Academy of Sciences of the United States of America 102(25): 8927–8932.PubMedCrossRefGoogle Scholar
  28. Finkel, Z. V., J. Sebbo, S. Feist-Burkhardt, A. J. Irwin, M. E. Katz, O. M. E. Schofield, J. R. Young & P. G. Falkowski, 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.0709381104.
  29. Gardner, J. L., A. Peters, M. R. Kearney, L. Joseph & R. Heinsohn, 2011. Declining body size: a third universal response to warming? Trend Ecol Evol 26(6): 285–291.CrossRefGoogle Scholar
  30. Gervais, F., 1997. Light-dependent growth, dark survival, and glucose uptake by Cryptophytes isolated from a freshwater chemocline. Journal of Phycology 33: 18–25.CrossRefGoogle Scholar
  31. Huisman, J. & B. Sommeijer, 2002. Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters. Journal of Sea Research 48(2): 83–96.CrossRefGoogle Scholar
  32. Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.CrossRefGoogle Scholar
  33. Huisman, J., N. N. P. Thi, D. M. Karl & B. Sommeijer, 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439(7074): 322–325.PubMedCrossRefGoogle Scholar
  34. IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  35. Jäger, C. G., S. Diehl & G. M. Schmidt, 2008. Influence of water column depth and mixing on phytoplankton biomass, community composition, and nutrients. Limnology and Oceanography 53: 2361–2373.CrossRefGoogle Scholar
  36. Jankowski, T., D. M. Livingstone, H. Buhrer, R. Forster & P. Niederhauser, 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnology and Oceanography 51(2): 815–819.CrossRefGoogle Scholar
  37. Jansson, M., A. Jonsson, A. Andersson & J. Karlsson, 2010. Biomass and structure of planktonic communities along an air temperature gradient in subarctic Sweden. Freshwater Biology 55(3): 691–700.CrossRefGoogle Scholar
  38. Jöhnk, K. D., J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser & J. M. Stroom, 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology 14: 412–495.CrossRefGoogle Scholar
  39. King, J. R., B. J. Shuter & A. Z. Zimmerman, 1997. The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Canadian Journal of Fisheries and Aquatic Sciences 54: 1873–1882.Google Scholar
  40. Kosten, S., V. L. M. Huszar, E. Becares, L. S. Costa, E. van Donk, L. A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Luerling, T. Noges, S. Romo & M. Scheffer, 2011. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology. doi: 10.1111/j.1365-2486.2011.02488.x.
  41. Kromkamp, J. C. & T. Van Engeland, 2009. Changes in phytoplankton biomass in the Western Scheldt Estuary during the period 1978–2006. Estuaries and Coasts 33: 270–285.CrossRefGoogle Scholar
  42. Lewandowska, A. & U. Sommer, 2010. Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology Progress Series 405: 101–111.CrossRefGoogle Scholar
  43. Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181.PubMedCrossRefGoogle Scholar
  44. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climate Change 57(1–2): 205–225.CrossRefGoogle Scholar
  45. Lopez-Urrutia, A., E. San Martin, R. P. Harris & X. Irigoien, 2006. Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America 103: 8739–8744.PubMedCrossRefGoogle Scholar
  46. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace & R. C. Francis, 2002. The Pacific Decadal Oscillation. Journal of Oceanography 58: 35–44.CrossRefGoogle Scholar
  47. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.Google Scholar
  48. McKee, D. & D. Atkinson, 2000. The influence of climate change scenarios on populations of the mayfly Cloeon dipterum. Hydrobiologia 441(1–3): 55–62.CrossRefGoogle Scholar
  49. McQuatters-Gollop, A., P. C. Reid, M. Edwards, P. H. Burkill, C. Castellani, S. Batten, W. Gieskes, D. Beare, R. R. Bidigare, E. Head, R. Johnson, M. Kahru, J. A. Koslow & A. Pena, 2011. Is there a decline in marine phytoplankton? Nature 466: 591–596.Google Scholar
  50. Moran, X. A. G., A. Lopez-Urrutia, A. Calvo-Diaz & W. K. W. Li, 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16(3): 1137–1144.CrossRefGoogle Scholar
  51. O’Connor, M. I., M. F. Piehler, D. M. Leech, A. Anton & J. F. Bruno, 2009. Warming and resource availability shift food web structure and metabolism. PLoS Biology 7: e1000178.Google Scholar
  52. O’Reilly, C. M., S. R. Alin, P. Plisnier, A. S. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.PubMedCrossRefGoogle Scholar
  53. Padilla-Gamino, J. L. & R. C. Carpenter, 2007. Seasonal acclimatization of Asparagopsis taxiformis (Rhodophyta) from different biogeographic regions. Limnology and Oceanography 52: 833–842.CrossRefGoogle Scholar
  54. Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.PubMedCrossRefGoogle Scholar
  55. Peeters, F., D. Straile, A. Lorke & D. M. Livingstone, 2007. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Global Change Biology 13(9): 1898–1909.CrossRefGoogle Scholar
  56. Platt, T., C. Fuentes-Yaco & K. T. Frank, 2003. Spring algal bloom and larval fish survival. Nature 423: 398–399.PubMedCrossRefGoogle Scholar
  57. Ptacnik, R., S. Diehl & S. Berger, 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnology and Oceanography 48(5): 1903–1912.CrossRefGoogle Scholar
  58. Rabalais, N. N., R. E. Turner, Q. Dortch, D. Justic, V. J. Bierman & W. J. Wiseman, 2002. Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future. Hydrobiologia 475: 39–63.CrossRefGoogle Scholar
  59. Reynolds, C. S., 1987. Community organization in the freshwater plankton. Symposium of the British Ecological Society 27: 297–325.Google Scholar
  60. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  61. Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures. Journal of Plankton Research 5: 203–234.CrossRefGoogle Scholar
  62. Richardson, A. J., 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science 65(3): 279–295.CrossRefGoogle Scholar
  63. Richardson, T. L. & G. A. Jackson, 2007. Small phytoplankton and carbon export from the surface Ocean. Science 315: 838–840.PubMedCrossRefGoogle Scholar
  64. Riley, G., 1957. Phytoplankton of the North Central Sargasso Sea. Limnology and Oceanography 2: 252–270.Google Scholar
  65. Roberts, D., D. A. Hodgson, A. McMinn, E. Verleyen, B. Terry, C. Corbett & W. Vyverman, 2006. Recent rapid salinity rise in three East Antarctic lakes. Journal of Paleolimnology 36: 385–406.CrossRefGoogle Scholar
  66. Rodriguez, J., J. Tintore, J. T. Allen, J. M. Blanco, D. Gomis, A. Reul, J. Ruiz, V. Rodriguez, F. Echevarria & F. Jimenez-Gomez, 2001. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature 410: 360–363.PubMedCrossRefGoogle Scholar
  67. Rüger, T. & U. Sommer, 2012. Warming does not always benefit the small – results from a plankton experiment. Aquatic Botany 97: 64–68.Google Scholar
  68. Rühland, K. & J. P. Smol, 2005. Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226(1–2): 1–16.CrossRefGoogle Scholar
  69. Rühland, K., A. M. Paterson & J. P. Smol, 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology 14. doi: 10.1111/j.1365-2486.2008.01670.x.
  70. Salmaso, N., 2005. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnology and Oceanography 50(2): 553–565.CrossRefGoogle Scholar
  71. Saros, J. E., S. J. Interlandi, A. P. Wolfe & D. R. Engstrom, 2003. Recent changes in the diatom community structure of lakes in the Beartooth Mountain Range, USA. Arctic, Antarctic, and Alpine Research 35(1): 18–23.CrossRefGoogle Scholar
  72. Schalau, K., K. Rinke, D. Straile & F. Peeters, 2008. Temperature is the key factor explaining interannual variability of Daphnia development in spring – a modelling study. Oecologia 157: 531–543.PubMedCrossRefGoogle Scholar
  73. Schindler, D. W., P. J. Curtis, B. R. Parker & M. P. Stainton, 1996. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379(6567): 705–708.CrossRefGoogle Scholar
  74. Schmidt, D. N., H. R. Thierstein, J. Bollmann & R. Schiebel, 2004. Abiotic forcing of plankton evolution in the Cenozoic. Science 303(5655): 207–210.PubMedCrossRefGoogle Scholar
  75. Schmittner, A., 2005. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434(7033): 628–633.PubMedCrossRefGoogle Scholar
  76. Seebens, H., D. Straile, R. Hoegg, H. B. Stich & U. Einsle, 2007. Population dynamics of a freshwater calanoid copepod: complex responses to changes in trophic status and climate variability. Limnology and Oceanography 52(6): 2364–2372.CrossRefGoogle Scholar
  77. Shaffer, G., S. M. Olsen & J. O. P. Pedersen, 2009. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nature Geoscience 2: 105–109.CrossRefGoogle Scholar
  78. Siegel, D. A., S. C. Doney & J. A. Yoder, 2002. The North Atlantic spring phytoplankton bloom and Sverdrup’s critical depth hypothesis. Science 296(5568): 730–733.PubMedCrossRefGoogle Scholar
  79. Smayda, T. J., 1969. Some measurements of sinking rate of fecal pellets. Limnology and Oceanography 14(4): 621.CrossRefGoogle Scholar
  80. Smayda, T. J., 1997. What is a bloom? A commentary. Limnology and Oceanography 42: 1132–1136.CrossRefGoogle Scholar
  81. Smayda, T. J., D. Borkman, G. Beaugrand & A. Belgrano, 2004. Ecological effects of climate variation in the North Atlantic: phytoplankton. In Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Belgrano & B. Planque (eds), Marine Ecosystems and Climate Variation – the North Atlantic. Oxford University Press, Oxford: 49–58.Google Scholar
  82. Smith, W. & D. Nelson, 1985. Phytoplankton bloom produced by receding ice edge in the Ross Sea – spatial coherence with the density field. Science 227: 163–166.PubMedCrossRefGoogle Scholar
  83. Smith, K. L., B. H. Robison, J. J. Helly, R. S. Kaufmann, H. A. Ruhl, T. J. Shaw, B. S. Twining & M. Vernet, 2007. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science 317: 478–482.PubMedCrossRefGoogle Scholar
  84. Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Ruhland, S. Sorvari, D. Antoniades, S. J. Brooks, M. A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, E. Saulnier-Talbot, S. Siitoneni, N. Solovieva & J. Weckstrom, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102(12): 4397–4402.PubMedCrossRefGoogle Scholar
  85. Sommer, U., 1989. Plankton Ecology: Succession in Plankton Communities. Springer, Berlin.Google Scholar
  86. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fur Hydrobiologie 106: 433–471.Google Scholar
  87. Sommer, U. & K. Lengfellner, 2008. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology 14(6): 1199–1208.CrossRefGoogle Scholar
  88. Sommer, U. & A. Lewandowska, 2011. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Global Change Biology 17: 154–162.CrossRefGoogle Scholar
  89. Sommer, U., H. Stibor, A. Katechakis, F. Sommer & T. Hansen, 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484: 11–20.CrossRefGoogle Scholar
  90. Sorvari, S., A. Korhola & R. Thompson, 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8(2): 171–181.CrossRefGoogle Scholar
  91. Stenseth, N. C., G. Ottersen, J. W. Hurrell, A. Mysterud, M. Lima, K. S. Chan, N. G. Yoccoz & B. Adlandsvik, 2003. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proceedings of the Royal Society of London, Series B: Biological Sciences 270(1529): 2087–2096.CrossRefGoogle Scholar
  92. Straile, D., 2002. North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proceedings of the Royal Society of London, Series B: Biological Sciences 269(1489): 391–395.CrossRefGoogle Scholar
  93. Strecker, A. L., T. P. Cobb & R. D. Vinebrooke, 2004. Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnology and Oceanography 49(4): 1182–1190.CrossRefGoogle Scholar
  94. Sverdrup, H., 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil International pour l’ Exploration de la Mer 18: 287–295.Google Scholar
  95. Taucher, J. & A. Oschlies, 2011. Can we predict the direction of marine primary production change under global warming? Geophysical Research Letters 38: L02603.CrossRefGoogle Scholar
  96. Thackeray, S. J., T. H. Sparks, M. Frederiksen, S. Burthe, P. J. Bacon, J. R. Bell, M. S. Botham, T. M. Brereton, P. W. Bright, L. Carvalho, T. Clutton-Brock, A. Dawson, M. Edwards, J. M. Elliott, R. Harrington, D. Johns, I. D. Jones, J. T. Jones, D. I. Leechk, D. B. Roy, W. A. Scottt, M. Smith, R. J. Smithers, I. J. Winfield & S. Wanless, 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology 16: 3304–3313.CrossRefGoogle Scholar
  97. Tilzer, M. M., M. Elbrachter, W. W. Gieskes & B. Beese, 1986. Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biology 5: 105–111.CrossRefGoogle Scholar
  98. Tirok, K. & U. Gaedke, 2007. The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Oecologia 15: 625–642.Google Scholar
  99. Vehmaa, A. & K. Salonen, 2009. Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquatic Ecology 43: 693–705.CrossRefGoogle Scholar
  100. Wetzel, R. G., 2001. Limnology: Lakes and River Ecosystems. Academic, Tokyo.Google Scholar
  101. Wilhelm, S. & R. Adrian, 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53: 226–237.CrossRefGoogle Scholar
  102. Winder, M. & J. E. Cloern, 2010. The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3215–3226.CrossRefGoogle Scholar
  103. Winder, M. & D. A. Hunter, 2008. Temporal organization of phytoplankton communities linked to chemical and physical forcing. Oecologia 156: 179–192.PubMedCrossRefGoogle Scholar
  104. Winder, M. & D. E. Schindler, 2004a. Climate change uncouples trophic interactions in a lake ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  105. Winder, M. & D. E. Schindler, 2004b. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.CrossRefGoogle Scholar
  106. Winder, M., J. E. Reuter & G. Schladow, 2009. Lake warming favours small-sized planktonic diatoms. Proceedings of the Royal Society of London, Series B: Biological Sciences 276: 427–435.CrossRefGoogle Scholar
  107. Winder, M., S. A. Berger, A. Lewandowska, N. Aberle, K. Lengfellner, U. Sommer & S. Diehl, 2012. Spring phenological responses of marine and freshwater plankton to changing temperature and light conditions. Marine Biology. doi: 10.1007/s00227-012-1964-z.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Systems EcologyStockholm UniversityStockholmSweden
  2. 2.Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany

Personalised recommendations