Skip to main content
Log in

Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton grazing can potentially affect the biomass and composition of phytoplankton communities directly and indirectly. Low chlorophyll a concentration for a given TP concentration and simplified fishless food webs lead to the expectation that zooplankton community grazing rates are high in Subarctic regions; however, zooplankton community grazing rates have not been determined for Subarctic lakes/ponds. We estimated zooplankton community grazing rates on phytoplankton in 12 lakes and ponds in Wapusk National Park, Canada using a microcosm grazing experiment. Lakes and ponds differed in zooplankton taxonomic composition, Chl-a concentration, and zooplankton biomass. We found that the grazing rates on the total chlorophyll a (GRTotal) ranged 0–13.7% grazed per day and the grazing rates on the edible (<30 μm, GR<30) chlorophyll a was 0 to 16.7% per day. GRTotal increased with lake Daphnia and cladoceran biomass, as did GR<30, which also had a negative relationship with the total in-lake Chl-a. The calculated zooplankton grazing rates were within the range found for larger, temperate lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bertilsson, S., L. A. Hansson, W. Graneli & A. Philibert, 2003. Size-selective predation on pelagic microorganisms in Arctic freshwaters. Journal of Plankton Research 25: 621–631.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1984. Plankton community structure and limnetic primary production. American Naturalist 124: 159–172.

    Article  Google Scholar 

  • Carpenter, A. S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. V. Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1988. Consumer control of lake productivity. BioScience 38: 764–769.

    Article  Google Scholar 

  • Chow-Fraser, P. & C. K. Wong, 1985. Herbivorous feeding of three large freshwater calanoid copepods, Limnocalanus macrurus Sars, Senecella calanoides Juday and Epischura lacustris Forbes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22: 3195–3198.

    Google Scholar 

  • Cyr, H., 1998. Grazing of cladoceran- and copepod-dominated zooplankton communities in oligotrophic lakes. Canadian Journal of Fisheries and Aquatic Sciences 55: 414–422.

    Article  Google Scholar 

  • Cyr, H. & M. L. Pace, 1992. Grazing by zooplankton and its relationship to community structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 1455–1465.

    Article  Google Scholar 

  • De Melo, R. & P. D. N. Hebert, 1994. A taxonomic reevaluation of North American Bosminidae. Canadian Journal of Zoology 72: 1808–1825.

    Article  Google Scholar 

  • Dodson, S. I., 1975. Predation rates of zooplankton in Arctic ponds. Limnology and Oceanography 20: 426–433.

    Article  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of cladocera, copepoda and rotifera from the plankton, periphyton and benthos of continental waters. Oceologia 19: 75–97.

    Article  Google Scholar 

  • Environment Canada, 1994. Manual of Analytical Methods, Vol. 2. National Laboratory for Environmental Testing, Canadian Centre for Inland Waters, Burlington: 1097.

  • Flanagan, K. M., E. McCauley, F. Wrona & T. Prowse, 2003. Climate change: the potential for latitudinal effects on algal biomass in aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 60: 635–639.

    Article  CAS  Google Scholar 

  • Girard, R. & R. A. Reid, 1990. Dorset Research Centre Study Lakes: Sampling Methodology (1986–1989) and Lake Morphometry. Ontario Ministry of the Environment, Dorset.

    Google Scholar 

  • Hansson, L. A., 1992. The role of food-chain composition and nutrient availability in shaping algal biomass development. Ecology 73: 241.

    Article  Google Scholar 

  • Hansson, L. A. & L. J. Tranvik, 1996. Quantification of invertebrate predation and herbivory in food chains of low complexity. Oecologia 108: 542–551.

    Article  Google Scholar 

  • Hebert, P. D. N. & B. J. Hann, 1986. Patterns in the composition of arctic tundra pond microcrustacean communities. Canadian Journal of Fisheries and Aquatic Sciences 43: 1416–1425.

    Article  Google Scholar 

  • Hessen, D. O., 1992. Nutrient element limitation of zooplankton production. American Naturalist 140: 799–814.

    Article  Google Scholar 

  • Hrbáček, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 14: 192–195.

    Google Scholar 

  • James, M. R. & D. J. Forsyth, 1990. Zooplankton–phytoplankton interactions in a eutrophic lake. Journal of Plankton Research 12: 455–472.

    Article  Google Scholar 

  • Kling, G. W., B. Fry & J. O’Brien, 1992. Stable isotopes and planktonic structure in Arctic lakes. Ecology 73: 561–566.

    Article  Google Scholar 

  • Landry, M. R. & R. P. Hassett, 1982. Estimating the grazing impact of marine micro-zooplankton. Marine Biology 67: 283–288.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Lehman, J. T. & C. D. Sandgren, 1985. Species-specific rates of growth and grazing loss among freshwater algae. Limnology and Oceanography 30: 34–46.

    Article  Google Scholar 

  • Levine, M. A. & S. C. Whalen, 2001. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455: 189–201.

    Article  Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. & F. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publications, Oxford: 228–265.

    Google Scholar 

  • O’Brien, W. J., C. Buchanan & J. Haney, 1979. Arctic zooplankton community structure: exceptions to some general rules. Arctic 32: 237–247.

    Google Scholar 

  • Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus–chlorophyll a relationship. Canadian Journal of Fisheries and Aquatic Sciences 41: 1089–1096.

    Article  Google Scholar 

  • Peters, R. H. & J. A. Downing, 1984. Empirical analysis of zooplankton filtering and feeding rates. Limnology and Oceanography 29: 763–784.

    Article  Google Scholar 

  • Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • R Development Core Team, 2010 R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org.

  • Rautio, M. & W. F. Vincent, 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology 51: 1038–1052.

    Article  CAS  Google Scholar 

  • Rautio, M. & W. F. Vincent, 2007. Isotopic analysis of the sources of organic carbon for zooplankton in shallow subarctic and arctic waters. Ecography 30: 77–87.

    Google Scholar 

  • Shapiro, J., 1980. The importance of trophic-level interactions to abundance and species composition of algae in lakes. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems. The Hague, The Netherlands: 105–115.

    Chapter  Google Scholar 

  • Sterner, R. W., 1989. The role of grazers in phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer, New York: 107–169.

    Google Scholar 

  • Stibor, H., O. Vadstein, S. Diehl, A. Gelzleichter, T. Hansen, F. Hantzsche, A. Katechakis, B. Lippert, K. Løseth, C. Peters, W. Roederer, M. Sandow, L. Sundt-Hansen & Y. Olsen, 2004. Copepods act as a switch between alternative trophic cascades in marine pelagic food webs. Ecology Letters 7: 321–328.

    Article  Google Scholar 

  • Symons, C. C., S. E. Arnott & J. N. Sweetman, 2011. Nutrient limitation of phytoplankton communities in Subarctic lakes and ponds in Wapusk National Park Canada. Polar Biology. doi:10.1007/s00300-011-1092-0.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology 16: 311–322.

    Article  CAS  Google Scholar 

  • Vanni, M. J. & D. L. Findlay, 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 921–937.

    Article  Google Scholar 

  • Ward, H. B. & G. C. Whipple, 1959. Cladocera. In Edmonson, W. T. (ed.), Fresh Water Biology. John Wiley and Sons, New York: 587–656.

    Google Scholar 

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.

    Article  CAS  Google Scholar 

  • Wilson, M. & H. Yeatman, 1959. Free-living Copepoda. In Edmonson, W. T. (ed.), Fresh Water Biology. Wiley, New York: 735–861.

    Google Scholar 

  • Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35: 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing Ecological Data. Springer, New York: 69–73.

    Google Scholar 

Download references

Acknowledgments

We thank Parks Canada and Manitoba Conservation for logistical support. Thanks to J. Larkin, D. Gray, K. Lemmen, A. Courchene and A. Cameron for help with fieldwork. This work was supported by a Natural Sciences and Engineering Research Council Discovery grant [RGPIN/229541-2009 to S.E.A.]; Natural Sciences and Engineering Research Council USRA [399782 to C.C.S.]; the Polar Continental Shelf Project [630-10 to S.E.A.]; and the Northern Scientific Training Program [to C.C.S].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia C. Symons.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Symons, C.C., Arnott, S.E. & Sweetman, J.N. Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia 694, 131–141 (2012). https://doi.org/10.1007/s10750-012-1137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1137-6

Keywords

Navigation