Skip to main content

Advertisement

Log in

Does functional redundancy of communities provide insurance against human disturbances? An analysis using regional-scale stream invertebrate data

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Human-induced reductions in species richness might alter the quality of ecosystem services when the remaining species are not able to substitute the functions provided by extirpated species. We examined how human disturbances (nutrient enrichment, land use intensification, instream habitat degradation and the presence of alien species) influence the species richness of stream invertebrates. Stream invertebrates (425 native species) were collected by kick and sweep sampling technique at 274 stream sites covering the entire area of Hungary. We measured the species richness, functional richness (i.e. number of unique functional roles provided by community members) and functional redundancy (i.e. the functional insurance of the community) using information on the feeding habits of each species. To remove the effect of natural variability, we tested the effect of stressors on the residuals of models relating species richness, functional richness and functional redundancy with natural environmental gradients. Our results showed that species richness was negatively influenced by instream habitat degradation and nutrient enrichment. Independent of the way of quantifying functional richness and functional redundancy, we found that functional richness is more sensitive to human impact than functional redundancy of stream invertebrates. The finding that a reduction of species richness is associated with a loss of unique functional roles (functional richness) is important for conservation issues, because the number of unique functional roles is usually regarded as driver of ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beche, L. A. & B. Statzner, 2009. Richness gradients of stream invertebrates across the USA: taxonomy- and trait-based approaches. Biodiversity and Conservation 18: 3909–3930.

    Article  Google Scholar 

  • Blocksom, K. A. & J. E. Flotemersch, 2005. Comparison of macroinvertebrate sampling methods for nonwadeable streams. Environmental Monitoring and Assessment 102: 243–262.

    Article  PubMed  Google Scholar 

  • Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Development in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495–523.

    Article  PubMed  CAS  Google Scholar 

  • Boyero, L. & R. C. Bailey, 2001. Organization of macroinvertebrate communities at a hierarchy of spatial scales in a tropical stream. Hydrobiologia 464: 219–225.

    Article  Google Scholar 

  • Cao, Y., C. P. Hawkins & A. W. Storey, 2005. A method for measuring the comparability of different sampling methods used in biological surveys: implications for data integration and synthesis. Freshwater Biology 50: 1105–1115.

    Article  Google Scholar 

  • Cardinale, B. J., 2011. Biodiversity improves water quality through niche partitioning. Nature 472: 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Cardinale, B. J., M. A. Palmer & S. L. Collins, 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415: 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Carter, J. L. & V. H. Resh, 2001. After site selection and before data analysis: sampling, sorting and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA State Agencies. Journal of the North American Benthological Society 20: 658–682.

    Article  Google Scholar 

  • Céréghino, R., Y. S. Park, A. Copin & S. Lek, 2003. Predicting the species richness of aquatic insects in streams using a limited number of environmental variables. Journal of the North American Benthological Society 22: 442–456.

    Article  Google Scholar 

  • Chevenet, F., S. Doledec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Clarke, A., R. Mac Nally, N. Bond & P. S. Lake, 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53: 1707–1721.

    Article  Google Scholar 

  • Crawley, M. J., 2007. The R Book. Wiley, Chichester.

    Book  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. The feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Dahl, J., R. K. Johnson & L. Sandin, 2004. Detection of organic pollution of streams in southern Sweden using benthic macroinvertebrates. Hydrobiologia 516: 161–172.

    Article  CAS  Google Scholar 

  • DAISIE, 2008. European Invasive Alien Species Gateway (available on internet at http://www.europe-aliens.org). Accessed on 26 May 2009.

  • Diaz, S., J. Fargione, S. F. Chapin & D. Tilman, 2006. Biodiversity loss threatens human well-being. PLoS Biol 4: e277.

    Article  PubMed  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Review 81: 163–182.

    Google Scholar 

  • Dunbar, M. J., M. L. Pederse, D. Cadman, C. Extence, J. Waddingham, R. Chadd & S. E. Larsen, 2010. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshwater Biology 55: 226–242.

    Article  Google Scholar 

  • Elliott, J. M. & C. M. Drake, 1981. A comparative study of seven grabs used sampling benthic macroinvertebrates in rivers. Freshwater Biology 11: 99–120.

    Article  Google Scholar 

  • Erős, T., J. Heino, D. Schmera & M. Rask, 2009. Characterising functional trait diversity and trait-environment relationships in fish assemblages of boreal lakes. Freshwater Biology 54: 1788–1803.

    Article  Google Scholar 

  • Fauna European Web Service, 2004. Fauna Europaea Version 1.1 (available on internet at http://www.faunaeur.org). Accessed on 26 May 2009.

  • Heino, J., 2005. Positive relationship between regional distribution and local abundance in stream insects: a consequence of niche breath or niche position? Ecography 28: 345–354.

    Article  Google Scholar 

  • Heino, J., 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology. doi:10.1111/j.1365-2427.2011.02610.x.

  • Heino, J., T. Muotka & R. Paavola, 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology 72: 425–434.

    Article  Google Scholar 

  • Heino, J., H. Mykrä, H. Hämäläinen, J. Aroviita & T. Muotka, 2007. Response of taxonomic distinctness and species diversity indices to anthropogenic impacts and natural environmental gradients in stream macroinvertebrates. Freshwater Biology 52: 1846–1861.

    Article  Google Scholar 

  • Heino, J., H. Mykrä & J. Kotanen, 2008. Weak relationship between landscape characteristics and multiple facets of stream macroinvertebrate biodiversity in a boreal drainage basin. Landscape Ecology 23: 417–426.

    Article  Google Scholar 

  • Heino, J., J. Parviainen, R. Paavola, M. Jehle, P. Louchi & T. Muotka, 2005. Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position. Hydrobiologia 539: 121–130.

    Article  Google Scholar 

  • Hering, D., A. Buffagni, O. Moog, L. Sandin, M. Sommerhauser, I. Stubauer, C. Feld, R. Johnson, P. Pinto, N. Skoulikidis, P. Verdonschot & S. Zahradkova, 2003. The development of a system to assess the ecological quality of streams based on macroinvertebrates—design of the sampling programme within the AQEM project. International Review of Hydrobiology 88: 345–361.

    Article  Google Scholar 

  • Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.

    Article  Google Scholar 

  • Jacobsen, D., 2003. Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv für Hydrobiologie 158: 145–167.

    Article  Google Scholar 

  • Jacobsen, D., 2008. Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates. Oecologia 154: 795–807.

    Article  PubMed  Google Scholar 

  • Jonsson, M. & B. Malmqvist, 2000. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89: 519–523.

    Article  Google Scholar 

  • Jonsson, M. & B. Malmqvist, 2003. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134: 554–559.

    PubMed  Google Scholar 

  • Jonsson, M., O. Dangles, B. Malmqvist & F. Guerold, 2002. Simulating species loss following perturbation: assessing the effects on process rates. Proceedings of the Royal Society London B 269: 1047–1052.

    Article  Google Scholar 

  • Karlson, A. M. L., F. J. A. Nascimento, J. Naslund & R. Elmgren, 2010. Higher diversity of deposit-feeding macrofauna enhances phytodetritus processing. Ecology 91: 1414–1423.

    Article  PubMed  Google Scholar 

  • Kiss, B., P. Juhász, Z. Müller, L. Nagy & Á. Gáspár, 2006. Summary of the Ecological Survey of Surface Waters of Hungary (ECOSURV) (sampling locations, methods and investigators). Folia Historico Naturalia Musei Matraensis 30: 299–304.

    Google Scholar 

  • Lake, P. S., J. R. Thomson, H. Lada, R. M. Nally, D. Reid, J. Stanaway & A. C. Taylor, 2010. Diversity and distribution of macroinvertebrates in lentic habitats massively altered landscapes in south-eastern Australia. Diversity and Distributions 16: 713–724.

    Article  Google Scholar 

  • Laliberte, E., J. A. Wells, F. DeClerck, D. J. Metcalfe, C. P. Catterall, C. Queiroz, I. Aubin, S. P. Bonser, Y. Ding, J. M. Fraterrigo, S. McNamara, J. W. Morgan, D. S. Merlos, P. A. Vesk & M. M. Mayfield, 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13: 76–86.

    Article  PubMed  Google Scholar 

  • Loreau, M., 2004. Does functional redundancy exist? Oikos 104: 606–611.

    Article  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman & D. A. Wardle, 2001. Biodiversity and ecosystem functioning: current knowledge and further challenges. Science 294: 804–808.

    Article  PubMed  CAS  Google Scholar 

  • Mason, N. W. H., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Article  Google Scholar 

  • Mayfield, M. M., S. P. Bonser, J. W. Morgan, I. Aubin, S. McNamara & P. A. Vesk, 2010. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography 19: 423–431.

    Google Scholar 

  • McKie, B. G., M. Schindler, M. O. Gessner & B. Malmqvist, 2009. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160: 757–770.

    Article  PubMed  Google Scholar 

  • Ministry of Environment and Water, 2005a. ECOSURV. Manual for sampling and determinations. Report. Ministry of Environment and Water, Hungary (available on internet at http://www.eu-wfd.info/ecosurv/). Accessed on 16 December 2010.

  • Miserendino, M. L. & C. I. Masi, 2010. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators 10: 311–319.

    Article  CAS  Google Scholar 

  • Moog, O., 1995. Fauna Aquatic Austriaca. Lieferung Mai/95. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Wien.

  • Morin, A., J. Stephenson, J. Strike & A. G. Solimini, 2004. Sieve retention probabilities of stream benthic invertebrates. Journal of the North American Benthological Society 23: 383–391.

    Article  Google Scholar 

  • Naeem, S., 1998. Species redundancy and ecosystem reliability. Conservation Biology 12: 39–45.

    Article  Google Scholar 

  • Nalepa, T. F., D. L. Fanslow & G. A. Lang, 2009. Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugensis. Freshwater Biology 54: 466–479.

    Article  Google Scholar 

  • Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18–24.

    Article  PubMed  Google Scholar 

  • Palmer, M. A., H. L. Menninger & W. Bernhardt, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.

    Article  Google Scholar 

  • Petchey, O. L., 2003. Integrating methods that investigate how complementarity influences ecosystem services. Oikos 101: 323–330.

    Article  Google Scholar 

  • Petchey, O. L., K. L. Evans, I. S. Fishburn & K. J. Gaston, 2007. Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology 76: 977–985.

    Article  PubMed  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5: 402–411.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.

    Article  PubMed  Google Scholar 

  • R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for statistical computing, Vienna. ISBN 3-900051-07-0 (available on internet at http://R-project.org).

  • Reiss, J., J. R. Bridle, J. M. Montoya & G. Woodward, 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology and Evolution 24: 505–514.

    Article  PubMed  Google Scholar 

  • Ricotta, C., 2005. A note on functional diversity measures. Basic and Applied Ecology 6: 479–486.

    Article  Google Scholar 

  • Schmera, D. & B. Baur, 2011. Testing a typology system for running waters for conservation planning in Hungary. Hydrobiologia 665: 183–194.

    Article  Google Scholar 

  • Schmera, D., T. Erős & J. Podani, 2009a. A measure for assessing functional diversity in ecological communities. Aquatic Ecology 43: 157–176.

    Article  Google Scholar 

  • Schmera, D., J. Podani & T. Erős, 2009b. Measuring the contribution of community members to functional diversity. Oikos 118: 961–971.

    Article  Google Scholar 

  • Statzner, B., N. Bonada & S. Doledec, 2007. Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodiversity and Conservation 16: 3609–3632.

    Article  Google Scholar 

  • Thibault, K. M., S. K. M. Ernest & J. H. Brown, 2010. Redundant or complementary? Impact of a colonizing species on community structure and function. Oikos 119: 1719–1726.

    Article  Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.

    Article  Google Scholar 

  • van Dam, H., C. Stenger-Kovács, É. Ács, G. Borics, K. Buczkó, É. Hajnal, E. Soroczki-Pintér, G. Várbiró, B. Tóthmérész & J. Padisák, 2007. Implementation of the European Water Framework Directive: development of a system for water quality assessment of Hungarian running waters with diatoms. Archiv für Hydrobiologie Supplement to Large Rivers 17: 339–364.

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 2003. Board-scale geographical patterns in local stream insect genera richness. Ecography 26: 751–767.

    Article  Google Scholar 

  • Voelz, N. J. & J. V. McArthur, 2000. An exploration of factors influencing lotic insect species richness. Biodiversity and Conservation 9: 1543–1570.

    Article  Google Scholar 

  • Wirth, A., D. Schmera & B. Baur, 2010. Native and alien macroinvertebrate richness in a remnant of the former river Rhine: a source for recolonisation of restored habitats? Hydrobiologia 652: 89–100.

    Article  Google Scholar 

  • Wood, S. N., 2004. Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association 99: 673–686.

    Article  Google Scholar 

  • Wood, S. N., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, Boca Raton.

    Google Scholar 

  • Woodward, G., 2009. Biodiversity, ecosystem functioning and food webs in fresh waters: assembling the jigsaw puzzle. Freshwater Biology 54: 2171–2187.

    Article  Google Scholar 

  • Yachi, S. & M. Loreau, 2007. Does complementarity resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters 10: 54–62.

    Article  PubMed  Google Scholar 

  • Yule, C. M., L. Boyero & R. Marchant, 2010. Effects of sediment pollution on food webs in a tropical river (Borneo, Indonesia). Marine and Freshwater Research 61: 204–213.

    Article  CAS  Google Scholar 

  • Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing Ecological Data. Springer, New York.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Zsuzsa Steindl and Andrea Zagyva (Ministry of Environment and Water, Hungary) for allowing access to the ECOSURV database. The work of the researchers participating in the ECOSURV project is appreciated. T. Erős was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the OTKA PD77684 research fund. We thank Anette Baur, Núria Bonada and two reviewers for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dénes Schmera.

Additional information

Handling editor: Nuria Bonada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmera, D., Baur, B. & Erős, T. Does functional redundancy of communities provide insurance against human disturbances? An analysis using regional-scale stream invertebrate data. Hydrobiologia 693, 183–194 (2012). https://doi.org/10.1007/s10750-012-1107-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1107-z

Keywords

Navigation