Skip to main content
Log in

Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The morpho-functional classifications of phytoplankton have been recently proposed as useful tools in the aquatic biomonitoring. In this study, we compared three different classifications in a range of different environmental conditions, a set of six shallow lakes with different stable states. The studied lakes are located in the Pampa Plain from Argentina, a region highly impacted as a consequence of the human activities. Among the selected lakes, three are in a turbid state, two of which have high phytoplankton abundances (phytoplankton-turbid), and one shows a high concentration of suspended inorganic matter (inorganic-turbid). Two lakes are clear and profusely colonized by submerged plants (clear-vegetated). Only one lake shows a typical alternative steady-state behavior, shifting turbid periods of high phytoplankton biomass with periods of more transparency and development of submerged macrophytes. We compared the three morpho-functional classifications applied by means of multivariate analyses in order to explore how much the variance of the biomass of the phytoplankton functional groups (for each functional classification) was explained by the environmental variables. The analyses performed showed a clear separation of the human-impacted turbid lakes from the clear-vegetated lakes. The advantages and disadvantages of the different morpho-functional classifications are discussed, concluding that the functional approach is adequate to analyze the phytoplankton communities in aquatic systems subjected to anthropogenic influence and for monitoring them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid and algal-turbid shallow lakes from the Pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • APHA AWWA WEF, 2005. Standard Methods for the Examination of Water & Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington.

    Google Scholar 

  • Cano, M. G., M. A. Casco, L. C. Solari, M. E. Mac Donagh, N. A. Gabellone & M. C. Claps, 2008. Implications of rapid changes in chlorophyll-a of plankton, epipelon and epiphyton in a Pampean shallow lake: an interpretation in terms of a conceptual model. Hydrobiologia 614: 33–45.

    Article  CAS  Google Scholar 

  • Devercelli, M., 2006. Phytoplankton of the middle Paraná River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia 563: 465–478.

    Article  Google Scholar 

  • Gleason, H. A., 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53: 7–26.

    Article  Google Scholar 

  • Hillebrand, H., C. D. D. Dürselen, U. Kirschtel, T. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.

    Article  Google Scholar 

  • Hurley, J. P., 1988. Analysis of aquatic pigments by high performance liquid chromatography. Journal of Analytical Purification 3: 12–16.

    Google Scholar 

  • Izaguirre, I. & A. Vinocur, 1994. Typology of shallow lakes of the Salado River basin (Argentina), based on phytoplankton communities. Hydrobiologia 277: 49–62.

    Article  Google Scholar 

  • Jobbágy, E. G., M. D. Nosetto, C. S. Santoni & G. Baldi, 2008. El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecología Austral 18: 305–322.

    Google Scholar 

  • Kruk, C., N. Mazzeo, G. Lacerot & C. S. Reylnolds, 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24: 901–912.

    Article  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Kruk, C., E. T. H. M. Peeters, E. H. Van Nes, V. L. M. Huszar, L. S. Costa & M. Scheffer, 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography 56: 110–118.

    Article  Google Scholar 

  • Laurion, I., A. Lami & R. Sommaruga, 2002. Distribution of mycosporine-like aminoacids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology 26: 283–294.

    Article  Google Scholar 

  • Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.

    Article  CAS  Google Scholar 

  • Llames, M. E., L. Lagomarsino, N. Diovisalvi, P. Fermani, A. M. Torremorell, G. Pérez, F. Unrein, J. Bustingorry, R. Escaray, M. Ferraro & H. Zagarese, 2009. The effects of light availability in shallow, turbid waters: a mesocosm study. Journal of Plankton Research 31: 1517–1529.

    Article  Google Scholar 

  • Mantoura, R. F. C. & C. A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Analytica Chimica Acta 151: 297–314.

    Article  CAS  Google Scholar 

  • Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2011. Fight on plankton! Or, phytoplankton shape and size as adaptive tools to get ahead in the struggle for life. Cryptogamie, Algologie 32: 157–204.

    Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pérez, G. L., A. Torremorell, J. Bustingorry, R. Escaray, P. Pérez, M. Diéguez & H. Zagarese, 2010. Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica 40: 30–39.

    Article  Google Scholar 

  • Quirós, R. & E. Drago, 1999. The environmental state of Argentinean lakes: an overview. Lakes and Reservoirs: Research and Management 4: 55–64.

    Article  Google Scholar 

  • Quirós, R., A. M. Renella, M. B. Boveri, J. J. Rosso & A. Sosnovsky, 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12: 175–185.

    Google Scholar 

  • Quirós, R., M. B. Boveri, C. A. Petrachi, A. M. Renella, J. J. Rosso, A. Sosnovsky & H. T. von Bernard, 2006. Los efectos de la agriculturización del humedal pampeano sobre la pampeano sobre la eutrofización de sus lagunas. In Tundisi, J. G. T., Matsumura-Tundisi & C. Sidagis Galli (eds), Eutrofização na América do Sul: Causas, conseqüèncias e tecnologias de gerenciamento e controle: 1–16.

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Excellence in Ecology. Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status. Hydrobiologia 369(370): 11–26.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Sarmento, H. & J.-P. Descy, 2008. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. Journal of Applied Phycology 20: 1001–1011.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, J. H., E. T. Peltzer, M. J. Alperin, G. Cauwet, J. W. Farrington, B. Fry, D. M. Karl, J. H. Martin, A. Spitzy, S. Tugrul & C. A. Carlson, 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.

    Article  CAS  Google Scholar 

  • Sierra, E. M., M. E. Fernández Long & C. Bustos, 1994. Cronología de inundaciones y sequías en el noreste de la provincia de Buenos Aires 1911–89. Revista de la Facultad de Agronomía 14: 241–249.

    Google Scholar 

  • Silvoso, J., I. Izaguirre & L. Allende, 2011. Picoplankton structure in clear and turbid eutrophic shallow lakes: a seasonal study. Limnologica 41: 181–190.

    Article  CAS  Google Scholar 

  • Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. Ecological Studies 131: 115–132.

    Article  Google Scholar 

  • Stomp, M., J. Huisman, F. de Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. A. Wollenzien & L. J. Stal, 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104–107.

    Article  PubMed  CAS  Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolumen and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1988. CANOCO – a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] corresoondence analysis, principal components analysis and redundancy analysis. Report LWA-88-02, Agricultural Mathematics Group, Wageningen.

  • Tolotti, M., E. Rott, H. Thies & R. Psenner, 2005. Functional species groups of phytoplankton in relation to lake restoration: a long term study of Piburger See, Austria. Verhandlungen der Vereingung fuer theorestische und angewandte Limnologie 29: 891–894.

    Google Scholar 

  • Torremorell, A., J. Bustingorry, R. Escaray & H. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.

    Article  CAS  Google Scholar 

  • Torremorell, A., M. E. Llames, G. L. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitative Phytoplankton Methodik. Mitteilungen Internationale Vereinigung Limnologie 9: 1–38.

    Google Scholar 

  • Venrick, E. L., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 167–180.

    Google Scholar 

  • Weithoff, G., 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by a grant from CONICET (Argentina) PIP 5354 and a grant from the University of Buenos Aires UBACyT X838. We thank Dr. Horacio Zagarese for providing us all the facilities of his laboratory at the IIB- INTECH (Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús), and for his cooperation in the field campaigns. We also thank the reviewers for their valuable suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Izaguirre.

Additional information

Guest editors: N. Salmaso, L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák / Phytoplankton responses to human impacts at different scales: 16th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izaguirre, I., Allende, L., Escaray, R. et al. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698, 203–216 (2012). https://doi.org/10.1007/s10750-012-1069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1069-1

Keywords

Navigation