Skip to main content

Advertisement

Log in

Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study demonstrated how the impact of eutrophication in a deep lake at the southern border of the Alps (Lake Garda) was regulated by specific modes of atmospheric circulation relevant for the Mediterranean area. At the decadal scale, nutrients and phytoplankton increased concurrently since the 1970s. At the annual scale, year-to-year fluctuations in nutrients and phytoplankton were controlled through a chain of causal factors centred on deeply penetrative mixing events determining an upward transport of phosphorus from the hypolimnion to the trophogenic layers. The extent of mixing was in turn controlled by lake and air winter temperature, which were ultimately regulated by the winter fluctuations of the East Atlantic pattern (EA). In its negative state, the EA shows an intense high pressure over the West Atlantic, causing a north-easterly air flow bringing cold air from continental Europe to Mediterranean, thus favouring greater lake mixing and nutrient fertilisation. Cyanobacteria (mostly Planktothrix rubescens) were the organisms which greatly benefitted from the long-term increase in phosphorus concentrations and the year-to-year fluctuations in surface phosphorus availability controlled by the EA. Given the same availability of phosphorus in the water column, positive winter EA phases weakened the eutrophication effects and phytoplankton development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

    Article  PubMed  Google Scholar 

  • APHA, AWWA & WEF, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington.

    Google Scholar 

  • Blenckner, T. & D. Chen, 2003. Comparison of the impact of regional and North Atlantic atmospheric circulation on an aquatic ecosystem. Climate Research 23: 131–136.

    Article  Google Scholar 

  • Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Järvinen, C. N. Aonghusa, T. Nõges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference: understanding AIC and BIC in Model Selection. Sociological Methods and Research 33: 261–304.

    Article  Google Scholar 

  • Chorus, I., I. R. Falconer, H. J. Salas & J. Bartram, 2000. Health risks caused by freshwater cyanobacteria in recreational waters. Journal of Toxicology and Environmental Health, Part B 3: 323–347.

    Article  CAS  Google Scholar 

  • Conrad, K. F., I. P. Woiwod & J. N. Perry, 2003. East Atlantic teleconnection pattern and the decline of a common arctiid moth. Global Change Biology 9: 125–130.

    Article  Google Scholar 

  • D’Alelio, D. & N. Salmaso, 2011. Occurrence of an uncommon Planktothrix (Cyanoprokaryota, Oscillatoriales) in a deep lake south of the Alps. Phycologia 50: 379–383.

    Article  Google Scholar 

  • deCastro, M., M. Gomez-Gesteira, M. N. Lorenzo, I. Alvarez & A. J. C. Crespo, 2008. Influence of atmospheric modes on coastal upwelling along the western coast of the Iberian Peninsula, 1985 to 2005. Climate Research 36: 169–179.

    Article  Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus–chlorophyll relationship in lakes. Limnology and Oceanography 19: 767–773.

    Article  CAS  Google Scholar 

  • George, D. G., 2007. The impact of the North Atlantic oscillation on the development of ice on Lake Windermere. Climatic Change 81: 455–468.

    Article  CAS  Google Scholar 

  • George, G. (ed.), 2010. The Impact of Climate Change on European Lakes. Springer, Dordrecht.

    Google Scholar 

  • Goldman, C. R. & A. Jassby, 1990. Spring mixing depth as a determinant of annual primary production in lakes. In Tilzer, M. M. & C. Serruya (eds), Large Lakes. Ecological Structure and Function. Springer-Verlag, New York: 125–132.

    Google Scholar 

  • Hatzaki, M., H. A. Flocas, D. N. Asimakopoulosa & P. Maheras, 2007. The eastern Mediterranean teleconnection pattern: identification and definition. International Journal of Climatology 27: 727–737.

    Article  Google Scholar 

  • Huber, V., R. Adrian & D. Gerten, 2008. Phytoplankton response to climate warming modified by trophic state. Limnology and Oceanography 53: 1–13.

    Article  Google Scholar 

  • Hurrell, J. W., Y. Kushnir, G. Ottersen, & M. Visbeck, 2003. The North Atlantic Oscillation. Climatic Significance and Environmental Impact. Geophysical Monograph 134. American Geophysical Union, Washington.

  • Josey, S. A. & R. Marsh, 2005. Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. Journal of Geophysical Research 110: C05008.

    Article  Google Scholar 

  • Josey, S. A., S. Somot & M. Tsimplis, 2011. Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange. Journal of Geophysical Research 116: C02032.

    Article  Google Scholar 

  • Lehmann, A., K. Getzlaff & J. Harlaß, 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Climate Research 46: 185–196.

    Article  Google Scholar 

  • Livingstone, D. & M. Dokulil, 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnology and Oceanography 46: 1220–1227.

    Article  Google Scholar 

  • Luoto, T. P. & S. Helama, 2010. Palaeoclimatological and palaeolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quaternary Science Review 29: 2411–2423.

    Article  Google Scholar 

  • Manca, M. & W. R. DeMott, 2009. Response of the invertebrate predator Bythotrephes to a climate-linked increase in the duration of a refuge from fish predation. Limnology and Oceanography 54: 2506–2512.

    Article  Google Scholar 

  • Meis, S., J. Thackeray & D. Jones, 2009. Effects of recent climate change on phytoplankton phenology in a temperate lake. Freshwater Biology 54: 1888–1898.

    Article  CAS  Google Scholar 

  • Morabito, G., 2007. Variazioni climatiche interannuali e dinamica stagionale del fitoplancton nel Lago Maggiore. In Carli, B., G. Cavarretta, M. Colacino & S. Fuzzi (eds), Clima e Cambiamenti Climatici: le attività di ricerca del CNR. Consiglio Nazionale delle Ricerche, Roma: 617–620.

    Google Scholar 

  • Mosello, R., A. Calderoni & R. De Bernardi, 1997. Research on the evolution of the deep southern subalpine lakes performed by the CNR Istituto Italiano di Idrobiologia. Documenta Istituto Italiano di Idrobiologia 61: 19–32. (in Italian).

    Google Scholar 

  • Padisák, J., E. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton—an experimental study. Hydrobiologia 500: 243–257.

    Article  Google Scholar 

  • Pinheiro, J. C. & D. M. Bates, 2000. Mixed-Effects Models in S and S-Plus. Springer-Verlag, New York.

    Book  Google Scholar 

  • R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 [available on internet at http://www.R-project.org/].

  • Rott, E., N. Salmaso & E. Hoehn, 2007. Quality control of Utermöhl based phytoplankton biovolume estimates—an easy task or a Gordian knot? Hydrobiologia 578: 141–146.

    Article  Google Scholar 

  • Salmaso, N., 2005. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnology and Oceanography 50: 553–565.

    Article  Google Scholar 

  • Salmaso, N., 2011. Interactions between nutrient availability and climatic fluctuations as determinants of the long-term phytoplankton community changes in Lake Garda, Northern Italy. Hydrobiologia 660: 59–68.

    Article  CAS  Google Scholar 

  • Salmaso, N., 2012. Influence of atmospheric modes of variability on the limnological characteristics of a deep lake south of the Alps. Climate Research 51:125–133. doi:10.3354/cr01063.

    Google Scholar 

  • Salmaso, N. & R. Mosello, 2010. Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Advances in Oceanography and Limnology 1: 29–66.

    Article  CAS  Google Scholar 

  • Salmaso, N., G. Morabito, L. Garibaldi & R. Mosello, 2007. Trophic development of the deep lakes south of the Alps: a comparative analysis. Fundamental and Applied Limnology 170: 177–196.

    Article  CAS  Google Scholar 

  • Schroeder, K., S. A. Josey, M. Herrmann, L. Grignon, G. P. Gasparini & H. L. Bryden, 2010. Abrupt warming and salting of the Western Mediterranean deep water after 2005: atmospheric forcings and lateral advection. Journal of Geophysical Research 115: C08029.

    Article  Google Scholar 

  • Simona, M., 2003. Winter and spring mixing depths affect the trophic status and composition of phytoplankton in the northern meromictic basin of Lake Lugano. Journal of Limnology 62: 190–206.

    Article  Google Scholar 

  • Solberg, B. Ø., A. Hofgaard & H. Hytteborn, 2002. Shifts in radial growth responses of coastal Picea abies induced by climatic change during the 20th century, central Norway. Ecoscience 9: 79–88.

    Google Scholar 

  • Stenseth, N. C., G. Ottersen, G. W. Hurrell, A. Mysterud, M. Lima, K.-S. Chan, N. G. Yoccoz & B. Ådlandsvik, 2003. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proceedings of the Royal Society B: Biological Sciences 270: 2087–2096.

    Article  PubMed  Google Scholar 

  • Straile, D., 2000. Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122: 44–50.

    Article  Google Scholar 

  • Straile, D., D. M. Livingstone, G. A. Weyhenmeyer & D. G. George, 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation. Climatic Significance and Environmental Impact. American Geophysical Union, Washington: 263–279.

    Chapter  Google Scholar 

  • Straile, D., E. Reiner, T. Jüngling, G. Thomas & H. Löffler, 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 151: 521–529.

    Article  PubMed  Google Scholar 

  • Toreti, A., F. Desiato, G. Fioravanti & W. Perconti, 2010. Seasonal temperatures over Italy and their relationship with low-frequency atmospheric circulation patterns. Climatic Change 99: 211–227.

    Article  Google Scholar 

  • Woolf, D. K., P. G. Challenor & P. D. Cotton, 2002. The variability and predictability of North Atlantic wave climate. Journal of Geophysical Research 107: 3145.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the colleagues at IASMA Research and Innovation Centre, S. Michele all’Adige, University of Padova and ARPAV (Environment Protection Agency of the Veneto Region) for their help and logistic support. This research was funded in part by the Veneto Region, ARPAV and the EU Central Europe Programme (EULAKES Project, 2CE243P3). We thank two anonymous referees for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Salmaso.

Additional information

Guest editors: N. Salmaso, L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák / Phytoplankton responses to human impacts at different scales: 16th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmaso, N., Cerasino, L. Long-term trends and fine year-to-year tuning of phytoplankton in large lakes are ruled by eutrophication and atmospheric modes of variability. Hydrobiologia 698, 17–28 (2012). https://doi.org/10.1007/s10750-012-1068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1068-2

Keywords

Navigation