Hydrobiologia

, Volume 686, Issue 1, pp 157–167 | Cite as

The impact of waterfowl herbivory on plant standing crop: a meta-analysis

  • Kevin A. Wood
  • Richard A. Stillman
  • Ralph T. Clarke
  • Francis Daunt
  • Matthew T. O’Hare
Primary Research Paper

Abstract

Waterfowl can cause substantial reductions in plant standing crop, which may have ecological and economic consequences. However, what determines the magnitude of these reductions is not well understood. Using data from published studies, we derived the relationship between waterfowl density and reduction in plant standing crop. When waterfowl density was estimated as individuals ha−1 no significant relationship with reduction in plant standing crop was detected. However, when waterfowl density was estimated as kg ha−1 a significant, positive, linear relationship with reduction in plant standing crop was found. Whilst many previous studies have considered waterfowl species as homologous, despite large differences in body mass, our results suggest that species body mass is a key determinant of waterfowl impact on plant standing crop. To examine relative impacts of waterfowl groups based on species body mass, a measure of plant biomass reduction (R s) per bird per hectare was calculated for each group. Comparison of R s values indicated some differences in impact between different waterfowl groups, with swans having a greater per capita impact than smaller-bodied waterfowl groups. We present evidence that this difference is linked to disparities in individual body size and associated differences in intake rates, diet composition and energy requirements. Future research priorities are proposed, particularly the need for experiments that quantify the importance of factors that determine the magnitude of waterfowl impacts on plant standing crop.

Keywords

Wildfowl density Ducks Geese Swans Rails Macrophyte biomass 

Notes

Acknowledgments

The authors thank Anthony Fox, Sidinei Thomaz and two anonymous referees for helpful comments on an earlier draft of this manuscript. Kevin Wood was supported by a Centre for Ecology & Hydrology Algorithm (Natural Environment Research Council) studentship.

Supplementary material

10750_2012_1007_MOESM1_ESM.pdf (749 kb)
Supplementary material 1 (PDF 750 kb)

References

  1. Allin, C. C. & T. P. Husband, 2003. Mute swan (Cygnus olor) impact on submerged aquatic vegetation and macroinvertebrates in a Rhode Island coastal pond. Northeastern Naturalist 10: 305–318.Google Scholar
  2. Allison, A. & I. Newton, 1974. Waterfowl at Loch Leven, Kinross. Proceedings of the Royal Society of Edinburgh Section B (Biology) 74: 365–381.Google Scholar
  3. Ankney, C. D., 1996. An embarrassment of riches: too many geese. Journal of Wildlife Management 60: 217–223.CrossRefGoogle Scholar
  4. Badzinski, S. S., C. D. Ankney & S. A. Petrie, 2006. Influence of migrant tundra swans (Cygnus columbianus) and Canada geese (Branta canadensis) on aquatic vegetation at Long Point, Lake Erie, Ontario. Hydrobiologia 567: 195–211.CrossRefGoogle Scholar
  5. Baldassarre, G. A. & E. G. Bolen, 2006. Waterfowl Ecology and Management, 2nd ed. Krieger, Malabar, FL.Google Scholar
  6. Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.CrossRefGoogle Scholar
  7. Bortolus, A., O. O. Iribarne & M. M. Martinez, 1998. Relationship between waterfowl and the seagrass Ruppia maritima in a southwestern Atlantic coastal lagoon. Estuaries 21: 710–717.CrossRefGoogle Scholar
  8. Bruinzeel, L. W., M. R. van Eerden, R. H. Drent & J. T. Vulink, 1997. Scaling metabolisable energy intake and daily energy expenditure in relation to the size of herbivorous waterfowl: limits set by available foraging time and digestive performance. In van Eerden, M. R. (ed.), Patchwork, Van Zee tot land 65. Directie IJsselmeergebied, Rijkswaterstaat, Lelystad: 111–132.Google Scholar
  9. Cargill, S. M. & R. L. Jefferies, 1984. The effects of grazing by lesser snow geese on the vegetation of a sub-Arctic salt marsh. Journal of Applied Ecology 21: 669–686.CrossRefGoogle Scholar
  10. Corti, P. & R. P. Schlatter, 2002. Feeding ecology of the black-necked swan Cygnus melancoryphus in two wetlands of southern Chile. Studies on Neotropical Fauna and Environment 37: 9–14.CrossRefGoogle Scholar
  11. Demment, M. W. & P. J. van Soest, 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist 125: 641–672.CrossRefGoogle Scholar
  12. Dixon, H. D. J., 2009. Effect of black swan foraging on seagrass and benthic invertebrates in western Golden Bay. Unpublished M.Sc. thesis, Massey University, New Zealand.Google Scholar
  13. Durant, D., H. Fritz, S. Blais & P. Duncan, 2003. The functional response in three species of herbivorous Anatidae: effects of sward height, body mass and bill size. Journal of Animal Ecology 72: 220–231.CrossRefGoogle Scholar
  14. Ebbinge, B., K. Canters & R. H. Drent, 1975. Foraging routines and estimated daily food intake in barnacle geese wintering in the northern Netherlands. Wildfowl 26: 5–19.Google Scholar
  15. Elmberg, J., 2009. Are dabbling ducks major players or merely noise in freshwater ecosystems? A European perspective, with reference to population limitation and density dependence. Wildfowl Special Issue 2: 9–23.Google Scholar
  16. Esler, D., 1989. An assessment of American coot herbivory of Hydrilla. Journal of Wildlife Management 53: 1147–1149.CrossRefGoogle Scholar
  17. Esselink, P., G. J. F. Helder, B. A. Aerts & K. Gerdes, 1997. The impact of grubbing greylag geese (Anser anser) on the vegetation dynamics of a tidal marsh. Aquatic Botany 55: 261–279.CrossRefGoogle Scholar
  18. Fox, A. D., B. S. Ebbinge, C. Mitchell, T. Heinicke, T. Aarvak, K. Colhoun, P. Clausen, S. Dereliev, S. Faragó, K. Koffijberg, H. Kruckenberg, M. J. J. E. Loonen, J. Madsen, J. Mooij, P. Musil, L. Nilsson, S. Pihl & H. van der Jeugd, 2010. Current estimates of goose population sizes in western Europe, a gap analysis and an assessment of trends. Ornis Svecica 20: 115–127.Google Scholar
  19. Gayet, G., C. Eraud, M. Benmergui, J. Broyer, F. Mesleard, H. Fritz & M. Guillemain, 2011a. Breeding mute swan habitat selection when accounting for detectability: a plastic behaviour consistent with rapidly expanding populations. European Journal of Wildlife Research 57: 1051–1056.CrossRefGoogle Scholar
  20. Gayet, G., M. Guillemain, H. Fritz, F. Mesleard, C. Begnis, A. Costiou, G. Body, L. Curtet & J. Broyer, 2011b. Do mute swan (Cygnus olor) grazing, swan residence and fishpond nutrient availability interactively control macrophyte communities? Aquatic Botany 95: 110–116.CrossRefGoogle Scholar
  21. Grime, J. P., 2002. Plant Strategies, Vegetative Processes, and Ecosystem Properties, 2nd ed. John Wiley & Sons, Chichester.Google Scholar
  22. Gyimesi, A., P. P. de Vries, T. de Boer & B. A. Nolet, 2011. Reduced tuber banks of fennel pondweed due to summer grazing by waterfowl. Aquatic Botany 94: 24–28.CrossRefGoogle Scholar
  23. Haramis, G. M. & G. D. Kearns, 2007. Herbivory by resident geese: the loss and recovery of wild rice along the tidal Patuxent River. Journal of Wildlife Management 71: 788–794.CrossRefGoogle Scholar
  24. Hidding, B., B. A. Nolet, T. de Boer, P. P. de Vries & M. Klaassen, 2010. Above- and below-ground vertebrate herbivory may each favour a different subordinate species in an aquatic plant community. Oecologia 162: 199–208.PubMedCrossRefGoogle Scholar
  25. Hilt, S., 2006. Recovery of Potamogeton pectinatus L. stands in a shallow lake under extreme grazing pressure. Hydrobiologia 570: 95–99.CrossRefGoogle Scholar
  26. Jupp, B. P. & D. H. N. Spence, 1977. Limitations of macrophytes in a eutrophic lake, Loch Leven. II. Wave action, sediments, and waterfowl grazing. Journal of Ecology 65: 431–446.CrossRefGoogle Scholar
  27. Kear, J., 2005. Ducks, Geese and Swans. Oxford University Press, Oxford.Google Scholar
  28. Klaassen, M. & B. A. Nolet, 2007. The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan – Fennel Pondweed system. Hydrobiologia 584: 205–213.CrossRefGoogle Scholar
  29. Lauridsen, T. L., E. Jeppesen & F. O. Andersen, 1993. Colonisation of submerged macrophytes in shallow fish manipulated Lake Vaeng: impact of sediment composition and waterfowl grazing. Aquatic Botany 46: 1–15.CrossRefGoogle Scholar
  30. Lauridsen, T. L., H. Sandsten & P. H. Moller, 2003. The restoration of a shallow lake by introducing Potamogeton spp.: the impact of waterfowl grazing. Lakes & Reservoirs: Research & Management 8: 177–187.CrossRefGoogle Scholar
  31. Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.CrossRefGoogle Scholar
  32. Lodge, D. M., G. Cronin, E. van Donk & A. J. Froelich, 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxa. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 149–174.CrossRefGoogle Scholar
  33. Marklund, O., H. Sandsten, L. A. Hansson & I. Blindow, 2002. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshwater Biology 47: 2049–2059.CrossRefGoogle Scholar
  34. Maron, J. L. & S. N. Gardner, 2000. Consumer pressure, seed versus safe-site limitation, and plant population dynamics. Oecologia 124: 260–269.CrossRefGoogle Scholar
  35. Massé, H., L. Rochefort & G. Gauthier, 2001. Carrying capacity of wetland habitats used by breeding greater snow geese. Journal of Wildlife Management 65: 271–281.CrossRefGoogle Scholar
  36. Mitchell, S. F. & R. T. Wass, 1996. Quantifying herbivory: grazing consumption and interaction strength. Oikos 76: 573–576.CrossRefGoogle Scholar
  37. Musil, P. & R. Fuchs, 1994. Changes in the abundance of water birds species in southern Bohemia (Czech Republic) in the last 10 years. Hydrobiologia 279(280): 511–519.CrossRefGoogle Scholar
  38. Newman, R. M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. Journal of the North American Benthological Society 10: 89–114.CrossRefGoogle Scholar
  39. Nummi, P. & L. Saari, 2003. Density-dependent decline of breeding success in an introduced, increasing mute swan Cygnus olor population. Journal of Avian Biology 34: 105–111.CrossRefGoogle Scholar
  40. O’Hare, M. T., R. A. Stillman, J. McDonnell & L. R. Wood, 2007. Effects of mute swan grazing on a keystone macrophyte. Freshwater Biology 52: 2463–2475.CrossRefGoogle Scholar
  41. Owen, M., 1972. Some factors affecting food intake and selection in white-fronted geese. Journal of Animal Ecology 41: 79–92.CrossRefGoogle Scholar
  42. Patton, D. L. H. & J. Frame, 1981. The effect of grazing in winter by wild geese on improved grassland in West Scotland. Journal of Applied Ecology 18: 311–325.CrossRefGoogle Scholar
  43. Perrow, M. R., J. H. Schutten, J. R. Howes, T. Holzer, F. J. Madgwick & A. J. D. Jowitt, 1997. Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342(343): 241–255.CrossRefGoogle Scholar
  44. Petrie, S. A. & C. M. Francis, 2003. Rapid increase in the lower Great Lakes population of feral mute swans: a review and a recommendation. Wildlife Society Bulletin 31: 407–416.Google Scholar
  45. Prop, J., J. M. Black, P. Shimmings & M. Owen, 1998. The spring range of barnacle geese Branta leucopsis in relation to changes in land management and climate. Biological Conservation 86: 339–346.CrossRefGoogle Scholar
  46. Rodríguez-Pérez, H. & A. J. Green, 2006. Waterbird impacts on widgeongrass Ruppia maritima in a Mediterranean wetland: comparing bird groups and seasonal effects. Oikos 112: 525–534.CrossRefGoogle Scholar
  47. Rodríguez-Villafañe, C., E. Becares & M. Fernandez-Alaez, 2007. Waterfowl grazing effects on submerged macrophytes in a shallow Mediterranean lake. Aquatic Botany 86: 25–29.CrossRefGoogle Scholar
  48. Samelius, G. & R. T. Alisauskas, 2009. Habitat alteration by geese at a large Arctic goose colony: consequences for lemmings and voles. Canadian Journal of Zoology 87: 95–101.CrossRefGoogle Scholar
  49. Sammler, J. E., D. E. Andersen & S. K. Skagen, 2008. Population trends of tundra-nesting birds at Cape Churchill, Manitoba, in relation to increasing goose populations. Condor 110: 325–334.CrossRefGoogle Scholar
  50. Sandsten, H., M. Beklioglu & Ö. Ince, 2005. Effects of waterfowl, large fish and periphyton on the spring growth of Potamogeton pectinatus L. in Lake Mogan, Turkey. Hydrobiologia 537: 239–248.CrossRefGoogle Scholar
  51. Smith, A. N., 2010. Grazing by black swans Cygnus atratus on a seasonally-flooded wetland. International Symposium on Wetlands in a Flood Pulsing Environment, Maun, Botswana.Google Scholar
  52. Søndergaard, M., L. Bruun, T. L. Lauridsen, E. Jeppesen & T. V. Madsen, 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84.CrossRefGoogle Scholar
  53. Stillman, R. A. & J. D. Goss-Custard, 2010. Individual-based ecology of coastal birds. Biological Reviews 85: 413–434.PubMedCrossRefGoogle Scholar
  54. Summers, R. W. & A. Grieve, 1982. Diet, feeding behaviour and food intake of the upland goose (Chloëphaga picta) and ruddy-headed goose (C. rubidiceps) in the Falkland Islands. Journal of Applied Ecology 19: 783–804.CrossRefGoogle Scholar
  55. Taylor, B., 1998. Rails: A Guide to the Rails, Crakes, Gallinules and Coots of the World. Pica Press, Sussex, UK.Google Scholar
  56. Therkildsen, O. R. & J. Madsen, 2000. Assessment of food intake rates in Pink-footed geese Anser brachyrhynchus based on examination of oesophagus contents. Wildlife Biology 6: 167–172.Google Scholar
  57. van der Wal, R., J. van der Koppel & M. Sagel, 1998. On the relation between herbivore foraging efficiency and plant standing crop: an experiment with barnacle geese. Oikos 82: 123–130.CrossRefGoogle Scholar
  58. van Donk, E. & A. Otte, 1996. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340: 285–290.CrossRefGoogle Scholar
  59. van Gils, J. A., A. Gyimesi & B. van Lith, 2007. Avian herbivory: an experiment, a field test, and an allometric comparison with mammals. Ecology 88: 2926–2935.PubMedCrossRefGoogle Scholar
  60. Verhoeven, J. T. A., 1980. The ecology of Ruppia-dominated communities in Western Europe. III. Aspects of production, consumption and decomposition. Aquatic Botany 8: 209–253.CrossRefGoogle Scholar
  61. Ward, R. M., P. A. Cranswick, M. Kershaw, G. E. Austin, A. W. Brown, L. M. Brown, J. C. Coleman, H. K. Chisholm & C. J. Spray, 2007. Numbers of mute swans Cygnus olor in Great Britain: results of the national census in 2002. Wildfowl 57: 3–20.Google Scholar
  62. Wood, K. A., R. A. Stillman, F. Daunt & M. T. O’Hare, 2012. An individual-based model of swan-macrophyte conflicts on a chalk river. In Boon, P. J. & P. J. Raven (eds), River Conservation and Management. Wiley-Blackwell, Chichester, UK: 339–343.CrossRefGoogle Scholar
  63. Wright, R. M. & V. E. Phillips, 1991. Reducing the breeding success of Canada and greylag geese, Branta canadensis and Anser anser, on a gravel pit. Wildfowl 42: 42–44.Google Scholar
  64. Ydenberg, R. C. & H. H. T. Prins, 1981. Spring grazing and the manipulation of food quality by barnacle geese. Journal of Applied Ecology 18: 443–453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kevin A. Wood
    • 1
    • 2
  • Richard A. Stillman
    • 2
  • Ralph T. Clarke
    • 2
  • Francis Daunt
    • 1
  • Matthew T. O’Hare
    • 1
  1. 1.Centre for Ecology & HydrologyMidlothianUK
  2. 2.School of Conservation SciencesBournemouth UniversityDorsetUK

Personalised recommendations