, Volume 686, Issue 1, pp 147–156 | Cite as

Stable karyotypes: a general rule for the fish of the family Prochilodontidae?

  • Maria Leandra Terencio
  • Carlos Henrique Schneider
  • Maria Claudia Gross
  • Marcelo Ricardo Vicari
  • Eliana Feldberg
Primary Research Paper


Cytogenetic studies involving the family Prochilodontidae have shown that these fish can be characterized by a constant diploid number and a conserved karyotypic macrostructure. This study focused on comparative physical chromosomal mapping using 18S and 5S rDNA to compare the species Semaprochilodus insignis and S. taeniurus. Our results indicated the conservation of large number of conventional chromosomal markers. The molecular cytogenetic analyses of the location of the 18S rDNA indicated the maintenance of a chromosome pair bearing these sites in both species analyzed, and it appears to be a conserved character among the majority of the species of this family. The stability of the number of 5S ribosomal DNA sites and their chromosomal localization as has been reported for the Prochilodontidae was not, however, confirmed for S. insignis and S. taeniurus, as these species showed multiple specific rDNA 5S sites. As such, and in spite of the fact that a number of studies indicate that the family Prochilodontidae has a conserved karyotypic structure, the utilization of molecular tools that use chromosomal segments as markers revealed that this presumed stability cannot be extended to the genome level for the species S. insignis and S. taeniurus.


FISH 18S rDNA 5S rDNA Comparative cytogenetics Semaprochilodus spp. Amazon River basin 



This study was supported by National Council for Scientific and Technological Development (CNPq—141660/2009-0), National Amazon Research Institute/Genetic, Conservations and Evolutionary Biology (INPA/GCBEV), The State of Amazonas Research Foundation (FAPEAM) and Centre for Studies of Adaptation to Environmental Changes in the Amazon (INCT ADAPTA,FAPEAM/CNPq 573976/2008-2).


  1. Artoni, R. F., M. R. Vicari, A. L. Endler, Z. I. Cavallaro, C. M. Jesus, M. C. Almeida, O. Moreira-Filho & L. A. C. Bertollo, 2006. Banding pattern of A and B chromosomes of Prochilodus lineatus (Characiformes, Prochilodontidae), with comments on B chromosomes evolution. Genetica 127: 277–284.PubMedCrossRefGoogle Scholar
  2. Barletta, M., A. J. Jaureguizar, C. Baigun, N. F. Foutoura, A. A. Agostinho, V. M. F. Almeida-Val & A. L. Val, 2010. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. Journal of Fish Biology 76: 2118–2176.PubMedCrossRefGoogle Scholar
  3. Bertollo, L. A. C., C. S. Takahashi & O. Moreira-Filho, 1978. Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erytrinidae). Brazilian Journal of Genetics 1: 103–120.Google Scholar
  4. Castro, R. M. C. & R. P. Vari, 2003. Family Prochilodontidae. In Reis, R. E., S. O. Kullander & C. J. Ferraris Jr (eds), Check List of the Freshwater Fishes of South and Central America. Editora da Pontifícia Universidade Católica, Porto Alegre: 65–70.Google Scholar
  5. Cioffi, M. B. & L. A. C. Bertollo, 2010. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity 105: 554–561.PubMedCrossRefGoogle Scholar
  6. Cioffi, M. B., C. Martins & L. A. C. Bertollo, 2010. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. Evolutionary Biology 10: 271.PubMedCrossRefGoogle Scholar
  7. Diniz, D. & L. A. C. Bertollo, 2003. Karyotypic studies on Hoplerythrinus unitaeniatus (Pisces, Erythrinidae) populations. A biodiversity analysis. Caryologia 56: 303–311.Google Scholar
  8. Feldberg, E., L. A. C. Bertollo, L. F. Almeida-Toledo, F. Foresti, O. Moreira-Filho & A. F. Santos, 1987. Biological aspects of Amazonian fishes. IX. Cytogenetic studies in two species of the genus Semaprochilodus (Pisces, Prochilodontidae). Genome 29: 1–4.CrossRefGoogle Scholar
  9. Ferreira, I. A., L. A. C. Bertollo & C. Martins, 2007. Comparative chromosome mapping of 5S rDNA and 5S Hind III repetitive sequences in Erythrinidae fishes (Characiformes) with emphasis on the Hoplias malabaricus ‘species complex’. Cytogenetic and Genome Research 118: 78–83.PubMedCrossRefGoogle Scholar
  10. Frederiksen, S., H. Cao, B. Lomholt, G. Levan & C. Hallemberg, 1997. The rat 5S rRNA bona fide gene repeat maps to chromosome 19q12 → qter and the pseudogene repeat maps to 12q12. Cytogenetics and Cell Genetics 76: 101–106.PubMedCrossRefGoogle Scholar
  11. Fujiwara, A., S. Abe, E. Yamaha, F. Yamazaki & M. C. Yoshida, 1998. Chromosomal localization and heterochromatin association of ribosomal RNA genes loci and silver stained nucleolar organizer regions in salmonid fishes. Chromosome Research 6: 463–471.PubMedCrossRefGoogle Scholar
  12. Gras, D. E., M. S. Brassesco, R. Markariani, H. A. Roncati, E. T. Sakamoto-Hojo, A. S. Fenocchio & M. C. Pastori, 2007. Cytogenetic polymorphism in Prochilodus lineatus (Pisces: Characiformes) from the middle Paraná River; Santa Fe City, Argentina. Comparative Cytogenetics 2: 113–119.Google Scholar
  13. Gross, M. C., C. H. Schneider, G. T. Valente, J. I. R. Porto, C. Martins & E. Feldberg, 2010a. Comparative cytogenetic analysis of the genus Symphysodon (Discus Fishes, Cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenetic and Genome Research 127: 43–53.CrossRefGoogle Scholar
  14. Gross, M. C., C. H. Schneider, G. T. Valente, C. Martins & E. Feldberg, 2010b. Variability of 18S rDNA locus among Symphysodon fishes: chromosomal rearrangements. Journal of Fish Biology 76: 1117–1127.PubMedCrossRefGoogle Scholar
  15. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/96/NT. Nucleic Acid Symposium Series 41: 95–98.Google Scholar
  16. Hatanaka, T. & P. M. Galetti Jr, 2004. Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122: 239–244.PubMedCrossRefGoogle Scholar
  17. Howell, W. M. & D. A. Black, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36: 1014–1015.PubMedCrossRefGoogle Scholar
  18. Humboldt, F. H. A. von, & A. Valenciennes, 1821. Recherches sur les poissons fluviatiles de I’Amérique Équinoxiale. In Voyage de Humboldt et Bonpland, Deuxiéme partie. Observations de Zoologie et d’Anatomie comparée. Paris: 145–216.Google Scholar
  19. Jesus, C. M. & O. Moreira-Filho, 2003. Chromosomal localization of 5S and 18S RNA genes in Prochilodus lineatus (Characiformes, Prochilodontidae). Caryologia 56: 281–287.Google Scholar
  20. Jesus, C. M., P. M. Galetti Jr, S. R. Valentin & O. Moreira-Filho, 2003. Molecular characterization and chromosomal localization of two families of satellite DNA in Prochilodus lineatus (Pisces, Prochilodontidae), a species with B chromosomes. Genetica 118: 25–32.PubMedCrossRefGoogle Scholar
  21. Kaiser, V. B., Bachtrog, D. 2010. Evolution of sex chromosomes in insects. The Annual Review of Genetics 44: 91–112.Google Scholar
  22. Komiya, H. & S. Takemura, 1979. Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. The Journal of Biochemistry 86: 1067–1080.Google Scholar
  23. Leite, R. G. & C. A. R. M. Araújo-Lima, 2002. Feeding of the Brycon cephalus, Triportheus elongatus and Semaprochilodus insignis (Osteichthyes, Characiformes) larvae in Solimões/Amazonas river and floodplain áreas. Acta Amazonica 2: 56–67.Google Scholar
  24. Leite, R. G., J. V. V. Silva & C. E. Freitas, 2006. Abundância e distribuição das larvas de peixes no Lago catalão e no encontro dos rios Solimões e Negro, Amazonas, Brasil. Acta Amazonica 4: 557–562.CrossRefGoogle Scholar
  25. Levan, A., K. Fredga & A. A. Sandberg, 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.CrossRefGoogle Scholar
  26. Lima, A. C. & C. A. R. M. Araújo-Lima, 2004. The distribution of larval and juvenile fishes in Amazonian rivers of different nutrient status. Freshwater Biology 49: 1–14.CrossRefGoogle Scholar
  27. Lucchini, S., I. Nardi, G. Barsacchi, R. Batistoni & F. Andronico, 1993. Molecular cytogenetics of the ribosomal (18S + 28S and 5S) DNA loci in primitive and advanced urodele amphibians. Genome 36: 762–773.PubMedCrossRefGoogle Scholar
  28. Mago-Leccia, E., 1972. Consideraciones sobre la sistematica de la familia Prochilodontidae (Osteichthyes, Cypriniformes), con una sinopsia de las especies de Venezuela. Acta Biologica Venezuelica 8(1): 35–96.Google Scholar
  29. Martins, C. & P. M. Galetti Jr, 1999. Chromosomal localization of 5S rRNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Research 7: 363–367.PubMedCrossRefGoogle Scholar
  30. Martins, C. & A. P. Wasko, 2004. Organization and evolution of 5S ribosomal DNA in the fish genome. In Williams C. R. (ed), Focus on Genome Research. Nova Science Publishers, Hauppauge, NY: 289–318.Google Scholar
  31. Mighell, A. J., N. R. Smith, P. A. Robinson & A. F. Markham, 2000. Vertebrate pseudogenes. FEBS Letters 468: 109–114.PubMedCrossRefGoogle Scholar
  32. Nakayama, C. M., E. Feldberg & L. A. C. Bertollo, 2008. Mapping of ribosomal genes and chromosomal markers in three species of the genus Serrasalmus (Characidae, Serrasalminae) from the Amazon basin. Neotropical Ichthyology 31: 868–873.Google Scholar
  33. Oliveira, E. C., 2003. Distribuição e abundância do ictioplâncton na área da Estação Ecológica de Anavilhanas, Rio Negro, Amazonas, Brasil. Thesis, Instituto Nacional de Pesquisas da Amazônia.Google Scholar
  34. Oliveira, C., M. Nirchio, A. Granado & S. Levy, 2003. Karyotypic characterization of Prochilodus mariae, Semaprochilodus kneri and Semaprochilodus laticeps (Teleostei: Prochilodontidae) from Caicara del Orinoco, Venezuela. Neotropical Ichthyology 1: 47–52.CrossRefGoogle Scholar
  35. Pauls, E. & L. A. C. Bertollo, 1990. Distribution of a supernumerary chromosome system and aspects of karyotypic evolution in the genus Prochilodus (Pisces, Prochilodontidae). Genetica 81: 117–123.CrossRefGoogle Scholar
  36. Pinkel, D., T. Straume & J. W. Gray, 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proceedings of the Natural Academy of Science of the United States of America 83: 2934–2938.CrossRefGoogle Scholar
  37. Ribeiro, M. C. L. B., 1983. As migrações dos jaraquis (Pisces, Prochilodontidae) no rio Negro, Amazonas, Brasil. Dissertação, Instituto Nacional de Pesquisas da Amazônia/Fundação Universidade do Amazonas.Google Scholar
  38. Ribeiro, M. C. L. B., 1985. A natural hibrid between two tropical fishes: Semaprochilodus insignis x Semaprochilodus taeniurus (Teleostei, Characoidei, Prochilodontidae). Revista Brasileira de Zoologia 7: 419–421.Google Scholar
  39. Sambrook, J. & D. W. Russell, 2001. Molecular Cloning: A Laboratory Manual, Vol. I. Cold Spring Harbor Press, Cold Spring Harbor.Google Scholar
  40. Schmid, M., L. Vitelli & R. Batistoni, 1987. Chromosome banding in Amphibia. IV. Constitutive heterochromatin, nucleolus organizers, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95: 271–284.PubMedCrossRefGoogle Scholar
  41. Schomburgk, R. H., 1841. The Natural history of fishes of Guiana. Part I. In W. Jardine (ed), The Naturalists Library, Vol. 3. W. H. Lizars, Edinburgh: 263, 30 pls.Google Scholar
  42. Schweizer, D. & J. Loidl, 1987. A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9: 61–74.Google Scholar
  43. Sumner, A. T., 1972. A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 74: 304–306.CrossRefGoogle Scholar
  44. Sumner, A. T., 2003. Chromosomes: Organization and Function. Blackwell Publishing, Hoboken.Google Scholar
  45. Teixeira, A. S., J. C. P. Raposo & A. Jamieson, 1990. Transferrin variation in jaraquis, Semaprochilodus taeniurus and Semaprochilodus insignis, in the Amazon region. Animal Genetics 21: 419–422.CrossRefGoogle Scholar
  46. Thompson, J. D., D. G. Higging & T. J. Gibson, 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and matrix choice. Nucleic Acids Research 22: 4673–4680.PubMedCrossRefGoogle Scholar
  47. Val, A. L., V. M. F. Almeida-Val, A. R. Schwantes & M. L. B. Schawntes, 1984. Biological aspects of Amazonian fishes. I. Red blood cell phosphates of schooling fishes (Genus Semaprochilodus, Prochilodontidae). Comparative Biochemistry and Physiology 78(1): 215–217.PubMedGoogle Scholar
  48. Val, A. L., G. C. Menezes & C. M. Wood, 1998. Red blood cell adrenergic responses in Amazonian teleosts. Journal of Fish Biology 52: 83–93.CrossRefGoogle Scholar
  49. Valente, G. T., J. Mazzuchelli, I. A. Ferreira, A. B. Poletto & B. E. A. Fantinatti, 2010. Cytogenetic mapping of the retroelements REX 1, REX 3 and REX 6 among cichlid fish: new insights on the chromosomal distribution of transposable elements. Cytogenetic and Genoma Research: 1–9. doi: 10.1159/000322888.
  50. Vazzoler, A. E. A. M., M. Caraciolo-Malta, S. A. Amadio, 1989. Aspectos Biológicos de peixes amazônicos. XI. Reprodução das espécies do gênero Semaprochilodus (Characiformes, Prochilodontidae) do baixo rio Negro, Amazonas, Brasil. Revista Brasileira de Biologia 1: 165–173.Google Scholar
  51. Venere, P. C., C. S. Miyazawa & P. M. Galetti Jr, 1999. New cases of supernumerary chromosomes in Characiform fishes. Genetics and Molecular Biology 22: 345–349.CrossRefGoogle Scholar
  52. Vicari, M. R., M. C. Almeida, L. A. C. Bertollo, O. Moreira-Filho & R. F. Artoni, 2006. Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA in the fish Prochilodus lineatus (Characiformes, Prochilodontidae). Genetics and Molecular Biology 4: 621–625.CrossRefGoogle Scholar
  53. Vicari, M. R., V. Nogaroto, R. B. Noleto, M. M. Cestari, M. B. Cioffi, M. C. Almeida, O. Moreira-Filho, L. A. C. Bertollo & R. F. Artoni, 2010. Satellite DNA and chromosomes in Neotropical fishes: methods, applications and perspectives. Journal of Fish Biology 76: 1094–1116.PubMedCrossRefGoogle Scholar
  54. Voltolin, T. A., J. A. Senhorini, C. Oliveira, F. Foresti, J. Bortolozzi & F. Porto-Foresti, 2010. B-chromosome frequency stability in Prochilodus lineatus (Characiformes, Prochilodontidae). Genetica 138: 281–284.PubMedCrossRefGoogle Scholar
  55. Wasko, A. P., C. Martins, J. M. Wright & P. M. Galetti Jr, 2001. Molecular organization of 5S rDNA in fishes of the genus Brycon. Genome 44: 893–902.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maria Leandra Terencio
    • 1
  • Carlos Henrique Schneider
    • 1
  • Maria Claudia Gross
    • 2
  • Marcelo Ricardo Vicari
    • 3
  • Eliana Feldberg
    • 1
  1. 1.Laboratório de Genética AnimalInstituto Nacional de Pesquisas da Amazônia—INPA/CPBA, Coordenação de Pesquisas em Biologia AquáticaManausBrazil
  2. 2.Departamento de BiologiaLaboratório de Citogenômica Animal, Universidade Federal do Amazonas, Instituto de Ciências BiológicasManausBrazil
  3. 3.Departamento de Biologia EstruturalLaboratório de Citogenética e Evolução, Universidade Estadual de Ponta Grossa, Molecular e GenéticaPonta GrossaBrazil

Personalised recommendations