Advertisement

Hydrobiologia

, Volume 684, Issue 1, pp 241–260 | Cite as

Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA

  • Yangdong PanEmail author
  • Robert M. Hughes
  • Alan T. Herlihy
  • Philip R. Kaufmann
Primary Research Paper

Abstract

Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, USA, to characterize variation of benthic diatom assemblages among and within rivers relative to environmental conditions. Analysis of similarity (ANOSIM) indicated that diatom assemblages were significantly different among all the seven rivers draining different ecoregions. Longitudinal patterns in diatom assemblages showed river-specific features. Bray–Curtis dissimilarity index values did not increase as a function of spatial distance among the sampled reaches within any river but the Malheur. Standardized Mantel r of association between assemblage similarity and spatial distance among sites ranged from a high of 0.69 (Malheur) to a low of 0.18 (Chehalis). In the Malheur River, % monoraphids, nitrogen-tolerant taxa, and beta-mesosaprobous taxa all decreased longitudinally while % motile taxa, especially Nitzschia, showed an opposite trend, reflecting a strong in-stream water quality gradient. Similar longitudinal trends in water quality were observed in other rivers but benthic diatom assemblages showed either weak response patterns or no patterns. Our study indicated that benthic diatom assemblages can clearly reflect among-river factors. The relationships between benthic diatom assemblages and water quality within each river may depend on the strength of the water quality gradients, interactive effects of water quality and habitat conditions, and diatom sampling design.

Keywords

Benthic diatoms River littoral zones Non-wadeable rivers Pacific Northwest 

Notes

Acknowledgments

This research was funded by grants to Oregon State University from the U.S. Environmental Protection Agency (RM832827, Brian Hill, Project Officer), National Marine Fisheries Service (AB133FO8SE3579, Chris Jordan, Project Officer), and U.S. Fish and Wildlife Service (81450-7-J528, Mark Buettner, Project Officer). Field work was conducted by Hank LaVigne, Jason Adams, Tenzin Botsford, Ryan Emig, April Farmer, Bill Freese, Cathy Gewecke, Laurel Genzoli, Elizabeth Hughes, and Scott Wiedemer. Chemical analyses were conducted by the Cooperative Chemical Analytical Laboratory, Forest Science Department, Oregon State University, Fig. 1 was produced by Colleen Johnson, site physical habitat structure values were calculated by Curt Seeliger, and Christian Parker assisted with R programming.

References

  1. Bahls, L. L., 1993. Periphyton bioassessment methods for Montana streams. Water Quality Bureau, Department of Health and Environmental Sciences, Helena, Montana.Google Scholar
  2. Benke, A. & K. Cushing, 2005. Rivers of North America. Elsevier Academic Press, Burlington, MA.Google Scholar
  3. Bennion, H., S. Wunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwater Biology 34: 271–283.CrossRefGoogle Scholar
  4. Bennion, H., P. G. Appleby & G. L. Phillips, 2001. Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. Journal of Paleolimnology 26: 181–204.CrossRefGoogle Scholar
  5. Biggs, B. J. F., R. J. Stevenson & R. L. Lowe, 1998. A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie 143: 21–56.Google Scholar
  6. Brieman, L., J. H. Friedman, R. A. Olshen & C. J. Stone, 1984. Classification and Regression Trees. Wadsworth and Brooks/Cole, Pacific Grove, CA.Google Scholar
  7. Burns, A. & K. F. Walker, 2000. Effects of water level regulation on algal biofilms in the River Murray, South Australia. Regulated Rivers: Research & Management 16: 433–444.CrossRefGoogle Scholar
  8. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  9. Cohn, S. A., 2001. Photo-stimulated effects on diatom motility. In Häder, D. P. & M. Lebert (eds), Photomovement. Comprehensive series in photosciences, Vol. 1. Elsevier, Amsterdam: 375–401.Google Scholar
  10. Dadoly, J. & R. Michie, 2010. Public Comment Draft: Malheur River Basin Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WQMP). Oregon Department of Environmental Quality, Portland, OR.Google Scholar
  11. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  12. Flotemersch, J. E., J. B. Stribling, R. M. Hughes, L. P. Reynolds, M. J. Paul & C. Wolter, 2011. Site length for biological assessment of boatable rivers. River Research and Applications 27: 520–535.CrossRefGoogle Scholar
  13. Fore, L. S. & C. Grafe, 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshwater Biology 47: 2015–2037.CrossRefGoogle Scholar
  14. Gillett, N., Y. Pan & C. Parker, 2009. Should only live diatoms be used in the bioassessment of small mountain streams? Hydrobiologia 620: 135–147.CrossRefGoogle Scholar
  15. Hudon, C., S. Lalonde & P. Gagnon, 2000. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Canadian Journal of Fisheries and Aquatic Sciences 57(S1): 31–42.CrossRefGoogle Scholar
  16. Hughes, R. M. & A. T. Herlihy, 2007. Electrofishing distance needed to estimate consistent IBI scores in raftable Oregon rivers. Transactions of the American Fisheries Society 136: 135–141.CrossRefGoogle Scholar
  17. Hughes, R. M. & D. V. Peck, 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27: 837–859.CrossRefGoogle Scholar
  18. Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, S. S. Intelmann, S. C. Corbett, M. C. Arbogast & R. C. Hjort, 2002. Electrofishing distance needed to estimate fish species richness in raftable Oregon rivers. North American Journal of Fisheries Management 22: 1229–1240.CrossRefGoogle Scholar
  19. Jackson, P. L. & A. J. Kimerling, 1993. Atlas of the Pacific Northwest, 8th ed. Oregon State University Press, Corvallis.Google Scholar
  20. Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology. BioScience 45: 134–141.CrossRefGoogle Scholar
  21. Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. EPA 620/R-99/003. Environmental Monitoring and Assessment Program. U.S. Environmental Protection Agency, Corvallis, OR.Google Scholar
  22. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae, teil 1. Naviculaceae. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  23. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae, teil 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  24. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae, teil 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  25. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae, teil 4. Achnanthaceae, kritische erganzungen zu Navicula (lineolate) und Gomphonema. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  26. Lane, C. L., J. E. Flotemersch, K. A. Blocksom & S. DeCelles, 2007. Effect of sampling method on diatom composition for use in monitoring and assessing large river condition. River Research and Applications 23: 1126–1146.CrossRefGoogle Scholar
  27. LaVigne, H. R., R. M. Hughes & A. T. Herlihy, 2008. Bioassessments to detect changes in Pacific Northwest river fish assemblages: a Malheur River case study. Northwest Science 82: 251–258.CrossRefGoogle Scholar
  28. Leland, H. V., L. R. Brown & D. K. Mueller, 2001. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshwater Biology 46: 1139–1167.CrossRefGoogle Scholar
  29. Mantel, N., 1967. The detection of disease clustering and generalized regression approach. Cancer Research 27: 209–220.PubMedGoogle Scholar
  30. Mebane, C. A., T. R. Maret & R. M. Hughes, 2003. An index of biological integrity (IBI) for Pacific Northwest rivers. Transactions of the American Fisheries Society 132: 239–261.CrossRefGoogle Scholar
  31. Moulton II S. R., J. G. Kennen, R. M. Goldstein & J. A. Hambrook, 2002. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program. USGS Open-File Report 02-150.Google Scholar
  32. Naiman, R. J. & R. E. Bilby, 1998. River ecology and management in the Pacific Coastal ecoregion. In Naiman, R. J. & R. E. Bilby (eds), River ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer-Verlag, New York: 1–10.Google Scholar
  33. Naymik, J., Y. Pan & J. Ford, 2005. Diatom assemblages as indicators of timber harvest effects in coastal Oregon streams. Journal of North American Benthological Society 24: 569–584.Google Scholar
  34. Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States. Volume 1. Monographs of the Academy of Natural Sciences of Philadelphia, no. 13. Academy of Natural Sciences of Philadelphia, Philadelphia, PA.Google Scholar
  35. Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States. Volume 2. Monographs of the Academy of Natural Sciences of Philadelphia, no. 13. Academy of Natural Sciences of Philadelphia, Philadelphia, PA.Google Scholar
  36. Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. EPA/620/R-06/003. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.Google Scholar
  37. Peck, D. V., D. K. Averill, A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, M. R. Cappaert, T. Magee & P. A. Monaco, in press. Environmental Monitoring and Assessment Program: Surface Waters Western Pilot Study—field operations manual for nonwadeable rivers and streams. US Environmental Protection Agency, Washington, DC.Google Scholar
  38. PRISM Climate Group, 2010. Oregon State University [available on internet at http://www.prismclimate.org, created 4 Feb 2004].
  39. R Development Core Team, 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  40. Reavie, E. D., T. M. Jicha, T. R. Angradi, D. W. Bolgrien & B. H. Hill, 2010. Algal assemblages for large river monitoring: comparison among biovolume, absolute and relative abundance metrics. Ecological Indicators 10: 167–177.CrossRefGoogle Scholar
  41. Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology 45: 57–73.CrossRefGoogle Scholar
  42. Sayer, C. D., 2001. Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English lake. Freshwater Biology 46: 743–757.CrossRefGoogle Scholar
  43. Sgro, G. V., E. D. Reavie, T. M. Jicha, T. R. Angradi, D. W. Bolgrien & B. H. Hill, 2010. Comparison of diatom-based indices of water quality in the Upper Mississippi River Basin. Journal of Environmental Indicators 5: 48–67.Google Scholar
  44. Stevens, D. L. & A. R. Olsen, 2004. Spatially balanced sampling of natural resources. Journal of American Statistical Association 99: 262–278.CrossRefGoogle Scholar
  45. Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Synder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. EPA 841-B-99-002, 2nd ed. Office of Water, US Environmental Protection Agency, Washington, DC: 6–22.Google Scholar
  46. Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms Applications for the Environmental and Earth Sciences. Cambridge University Press, New York: 11–40.Google Scholar
  47. Stevenson, R. J. & E. F. Stoermer, 1981. Quantitative differences between benthic algal communities along a depth gradient in Lake Michigan. Journal of Phycology 17: 29–36.CrossRefGoogle Scholar
  48. US EPA (US Environmental Protection Agency), 1987. Handbook of methods for acid deposition studies, laboratory analysis for surface water chemistry. EPA 600/4-87/026. Office of Water, US Environmental Protection Agency, Washington, DC.Google Scholar
  49. van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  50. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  51. Weilhoefer, C. L. & Y. Pan, 2006. Diatom assemblages and their associations with environmental variables in Oregon coastal streams, USA. Hydrobiologia 561: 207–219.CrossRefGoogle Scholar
  52. Weilhoefer, C. L. & Y. Pan, 2007. A comparison of periphyton assemblages generated by two sampling protocols. Journal of North American Benthological Society 26: 308–318.CrossRefGoogle Scholar
  53. Welch, E. B., J. M. Jacoby & C. W. May, 1998. Stream quality. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer-Verlag, New York: 69–94.Google Scholar
  54. Wolin, J. A. & H. C. Duthie, 1999. Diatoms as indicators of water level change in freshwater lakes. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms Applications for the Environmental and Earth Sciences. Cambridge University Press, New York: 183–204.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Yangdong Pan
    • 1
    Email author
  • Robert M. Hughes
    • 2
    • 3
  • Alan T. Herlihy
    • 4
  • Philip R. Kaufmann
    • 5
  1. 1.Environmental Science and ManagementPortland State UniversityPortlandUSA
  2. 2.Amnis Opes InstituteCorvallisUSA
  3. 3.Departmento de BiologiaUniversidade Federal de LavrasLavrasBrasil
  4. 4.Department of Fisheries and WildlifeOregon State University, c/o US Environmental Protection AgencyCorvallisUSA
  5. 5.US Environmental Protection AgencyCorvallisUSA

Personalised recommendations