Advertisement

Hydrobiologia

, Volume 684, Issue 1, pp 189–214 | Cite as

When season does not matter: summer and winter trophic ecology of Arctic amphipods

  • Joanna LegeżyńskaEmail author
  • Monika Kędra
  • Wojciech Walkusz
Primary Research Paper

Abstract

Polar marine ecosystems’ functioning is known to be strongly affected by the seasonality of water column production. However, a response of benthic organisms may range from close coupling to total decoupling from seasonal variability of environmental processes, depending on a feeding strategy. In this study, we used a multi-method approach (gut content, lipid and stable isotope analyses) to examine trophic ecology and major food sources of a large set of Arctic sub-littoral amphipods, and to evaluate whether their feeding strategies undergo seasonal changes. The wide range of δ15N values (5.45-12.43‰) indicates that amphipods form a trophic continuum from primary herbivores to carnivores/scavengers. Three main feeding modes, namely scavenging/predatory, deposit-feeding/predatory and phytodetrivory, were distinguished based on the multivariate analysis of whole fatty acid profiles. Total lipid content was low in all species and included primarily short-term energy reserves of triacylglycerols. In general, amphipods feeding habits appeared to be independent of the seasonal phytodetritial pulses. Low reliance on lipid reserves and lack of major changes in the trophic strategies over time suggest that these crustaceans feed continuously, taking advantage of a variety of food sources that are available year-round in shallow polar waters.

Keywords

Amphipoda Arctic Trophic ecology Seasonality Fatty acids Stable isotopes 

Notes

Acknowledgments

Funding for this study came from European Centre for Arctic Environmental Research (ARCFAC) (Grant: ARCFAC-026129-2009-28) and Polish Ministry of Science (Grants: 1033/ARCFAC/2009/7 and 0252/B/P01/2009/36). This research would not have been possible without the support and great company of Wojtek Moskal, Piotr Bałazy, Marta Głuchowska, Anna Kubiszyn, Piotr Kukliński, Agnieszka Tatarek, Emilia Trudnowska, Józef Wiktor and Agata Zaborska. We also acknowledge two anonymous referees who greatly improved the original version of the manuscript.

References

  1. Arndt, C. E., J. Berge & A. Brandt, 2005. Mouthpart-atlas of Arctic sympagic amphipods—trophic niche separation based on mouthpart morphology and feeding ecology. Journal of Crustacean Biology 25: 401–412.Google Scholar
  2. Auel, H., M. Harjes, R. de Rocha, D. Stübing & W. Hagen, 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biology 25: 374–383.Google Scholar
  3. Beare, D. J. & P. G. Moore, 1998. The life histories of the offshore oedicerotids Westwoodilla caecula and Monoculodes packardi (Crustacea: Amphipoda) from Loch Fyne, Scotland. Journal of the Marine Biological Association of the United Kingdom 78: 835–852.Google Scholar
  4. Berge, J. & W. Vader, 2001. Revision of the amphipod (Crustacea) family Stegocephalidae. Zoological Journal of the Linnean Society 133: 531–592.Google Scholar
  5. Bergmann, M., J. Dannheim, E. Bauerfeind & M. Klages, 2009. Trophic relationships along a bathymetric gradient at the deep-sea observatory Hausgarten. Deep-Sea Research I 56: 408–424.Google Scholar
  6. Bodin, N., F. Le Loc’h & C. Hily, 2007. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. Journal of Experimental Marine Biology and Ecology 341: 168–175.Google Scholar
  7. Bousfield, E. L. & E. A. Hendrycks, 1995. The Amphipod superfamily Eusiroidea in the North American Pacific region. I. Family Eusiridae: systematics and distributional ecology. Amphipacifica 1: 3–59.Google Scholar
  8. Bradstreet, M. S. W. & W. E. Cross, 1982. Trophic relationships at high Arctic ice edges. Arctic 35: 1–12.Google Scholar
  9. Brandt, A., 1997. Biodiversity of peracarid crustaceans (Malacostraca) from the shelf down to the deep Arctic Ocean. Biodiversity and Conservation 6: 1533–1556.Google Scholar
  10. Bryazgin, V., 1997. Diversity, distribution and ecology of benthic amphiods (Amphipoda, Gammaridea) in the Barents Sea sublittoral. Polish Polar Research 18: 89–106.Google Scholar
  11. Budge, S. M., A. M. Springer, S. J. Iverson & G. Sheffield, 2007. Fatty acid biomarkers reveal niche separation in an arctic benthic food web. Marine Ecology Progress Series 336: 305–309.Google Scholar
  12. Buhl-Mortensen, L., 1996. Amphipod fauna along an offshore-fjord gradient. Journal of Natural History 30: 23–49.Google Scholar
  13. Bühring, S. I. & B. Christiansen, 2001. Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone? Progress in Oceanography 50: 369–382.Google Scholar
  14. Busdosh, M., G. A. Robilliard, K. Tarbox & C. L. Beehler, 1982. Chemoreception in an Arctic amphipod crustacean: a field study. Journal of Experimental Marine Biology and Ecology 62: 261–269.Google Scholar
  15. Byrén, L., G. Ejdung & R. Elmgren, 2006. Comparing rate and depth of feeding in benthic deposit-feeders: a test on two amphipods, Monoporeia affinis (Lindström) and Pontoporeia femorata Kröyer. Journal of Experimental Marine Biology and Ecology 281: 109–121.Google Scholar
  16. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. The Proceedings of the National Academy of Sciences of the United Sciences of America 93: 10844–10847.Google Scholar
  17. Caine, E. A., 1977. Feeding mechanisms and possible resource partitioning of the Caprellidae (Crustacea: Amphipoda) from Puget Sound, USA. Marine Biology 42: 331–336.Google Scholar
  18. Carey, A. G. & M. A. Boudrias, 1987. Feeding ecology of Pseudalibrotus (= Onisimus) litoralis Krøyer (Crustacea: Amphipoda) on the Beaufort Sea inner continental shelf. Polar Biology 8: 29–33.Google Scholar
  19. Chevrier, A., P. Brunel & D. J. Wildish, 1991. Structure of a suprabenthic shelf sub-community of gammaridean Amphipoda in the Bay of Fundy compared with similar sub-communities in the Gulf of St. Lawrence. Hydrobiologia 223: 81–104.Google Scholar
  20. Clarke, R. K. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth.Google Scholar
  21. Clarke, A., A. Skadsheim & L. J. Holmes, 1985. Lipid biochemistry and reproductive biology in two species of Gammaridae (Crustacea: Amphipoda). Marine Biology 88: 247–263.Google Scholar
  22. Dauby, P., Y. Scailteur & C. De Broyer, 2001. Trophic diversity within the eastern Wedell Sea amphipod community. Hydrobiologia 443: 69–86.Google Scholar
  23. Drazen, J. C., C. F. Phleger, M. A. Guest & P. D. Nichols, 2009. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications. Comparative Biochemistry and Physiology, Part B 151: 79–87.Google Scholar
  24. Duggins, D. O. & J. E. Eckman, 1997. Is kelp detritus a good food for suspension feeders? Effects of kelp species, age and secondary metabolites. Marine Biology 128: 489–495.Google Scholar
  25. Ejdung, G. & R. Elmgren, 1998. Predation on newly settled bivalves by deposit-feeding amphipods: a Baltic Sea case study. Marine Ecology Progress Series 168: 87–94.Google Scholar
  26. Enequist, P., 1949. Studies on the soft bottom amphipods of the Skagerrak. Zoologiska Bidrag från Uppsala 28: 297–492.Google Scholar
  27. Fanelli, E., J. E. Cartes, P. Rumolo & M. Sprovieri, 2009. Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen. Deep-Sea Research I 56: 1504–1520.Google Scholar
  28. Feder, H. M., K. Iken, A. L. Blanchard, S. C. Jewett & S. Schonberg, 2011. Benthic food web structure in the southeastern Chukchi Sea: an assessment using δ13C and δ15N analyses. Polar Biology 34: 521–532.Google Scholar
  29. Folch, J., M. Lees & G. H. Sloane-Stanley, 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226: 497–509.PubMedGoogle Scholar
  30. Gooday, A. J., D. W. Pond & S. S. Bowser, 2002. Ecology and nutrition of the large agglutinated foraminiferan Bathysiphon capillare in the bathyal NE Atlantic: distribution within the sediment profile and lipid biomarker composition. Marine Ecology Progress Series 245: 69–82.Google Scholar
  31. Graeve, M., G. Kattner & D. Piepenburg, 1997. Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biology 18: 53–61.Google Scholar
  32. Graeve, M., P. Dauby & Y. Scailteur, 2001. Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding modes of antarctic amphipods. Polar Biology 24: 853–862.Google Scholar
  33. Graeve, M., C. Wiencke & U. Karsten, 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicators for phylogenetic and trophic relationships. Marine Ecology Progress Series 231: 67–74.Google Scholar
  34. Grebmeier, J. M. & N. M. Harrison, 1992. Seabird feeding on benthic amphipods facilitated by gray whale activity in the northern Bering Sea. Marine Ecology Progress Series 80: 125–133.Google Scholar
  35. Guerra-Gracia, J. M., 2002. Re-description of Caprella linearis (Linnaeus, 1767) and C. septentrionalis Kroeyer, 1838 (Crustacea: Amphipoda: Caprellidea) from Scotland, with an ontogenetic comparison between the species and a study of the clinging behaviour. Sarsia 87: 216–235.Google Scholar
  36. Guerra-Gracia, J. M. & J. M. Tierno de Figueroa, 2009. What do caprellids (Crustacea: Amphipoda) feed on? Marine Biology 156: 1881–1890.Google Scholar
  37. Hagen, W. & H. Auel, 2001. Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104: 313–326.PubMedGoogle Scholar
  38. Highsmith, R. C. & K. O. Coyle, 1990. High productivity of northern Bering Sea benthic amphipods. Nature 344: 862–863.Google Scholar
  39. Hill, C., M. A. Quigley, J. F. Cavaletto & W. Gordon, 1992. Seasonal changes in lipid content and composition in the benthic amphipods Monoporeia affinis and Pontoporeia femorata. Limnology and Oceanography 37: 1280–1289.Google Scholar
  40. Hobson, K. A. & H. E. Welch, 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series 84: 9–18.Google Scholar
  41. Hobson, K. A., W. G. Ambrose Jr. & P. E. Renaud, 1995. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and d15N analysis. Marine Ecology Progress Series 128: 1–10.Google Scholar
  42. Hobson, K. A., A. Fisk, N. J. Karnovsky, M. Holst, J.-M. Gagon & M. Fortier, 2002. A stable isotope (d13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminats. Deep-Sea Research II 49: 5131–5150.Google Scholar
  43. Hop, H., T. Pearson, E. N. Hegseth, K. M. Kovacs, C. Wiencke, S. Kwasniewski, K. Eiane, F. Mehlum, B. Gulliksen, M. Włodarska-Kowalczuk, C. Lydersen, J. M. Węsławski, S. Cochrane, G. W. Gabrielsen, J. G. Leakey, O. J. Lønne, M. Zajączkowski, S. Falk-Petersen, M. Kendall, S.-A. Wangberg, K. Bischof, A. Y. Voronkov, N. A. Kovaltchouk, J. Wiktor, M. Polterman, G. di Prisco, C. Papucci & S. Gerland, 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Research 21: 167–208.Google Scholar
  44. Huang, Y. M., J. B. McClintock, C. D. Amsler, K. J. Peters & B. J. Baker, 2006. Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. Journal of Experimental Marine Biology and Ecology 329: 55–65.Google Scholar
  45. Huys, R., J. M. Gee, C. G. Moore & R. Hamond, 1996. Marine and Brackish Water Harpacticoid Copepods. Part 1. Field Studies Council, Shrewsbury.Google Scholar
  46. Iken, K., T. Brey, U. Wand, J. Voigt & P. Junghans, 2001. Food web structure of the benthic community at the Porcupine abyssal Plain (NE Atalntic): a stable isotope analysis. Progress in Oceanography 50: 383–405.Google Scholar
  47. Iken, K., B. Bluhm & K. Dunton, 2010. Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep-Sea Research II 57: 71–85.Google Scholar
  48. Ingolfsson, A. & I. Agnarsson, 1999. Anonyx sarsi: a major unrecognized scavenger and prdator in the intertidal zone. Journal of the Marine Biological Association of the United Kingdom 79: 1127–1128.Google Scholar
  49. Iverson, S. J., 2009. Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In Arts, M. T., M. T. Brett & M. J. Kainz (eds), Lipids in Aquatic Ecosystems. Springer, New York: 281–307.Google Scholar
  50. Jarrett, N. E. & E. L. Bousfield, 1996. The amphipod superfamily Hadzioidea on the Pacific coast of North America. Family Melitidae. Part I. The Melita group: systematics and distributional ecology. Amphipacifica 2: 3–74.Google Scholar
  51. Jażdżewski, K., J. M. Węsławski & C. De Broyer, 1995. A comparison of the amphipod diversity in two polar fjords: Admiralty Bay, King George Island (Antarctic) and Horsund, Spitsbergen (Arctic). Polish Archives of Hydrobiology 42: 367–384.Google Scholar
  52. Josefson, A. B., T. L. Forbes & R. Rosenberg, 2002. Fate of phytodetritus in marine sediments: functional importance of macrofaunal community. Marine Ecology Progress Series 230: 71–85.Google Scholar
  53. Just, J., 1970. Amphipoda from Jorgen Bronlund fjord, North Greenland. Meddelelser om Gronland 184: 1–39.Google Scholar
  54. Just, J., 1980. Abyssal and deep bathyal Malacostraca (Crustacea) from the Polar Sea. Viedensk. Meddr dansk naturh. Foren. 142: 161–177.Google Scholar
  55. Kaczmarek, H., M. Włodarska-Kowalczuk, J. Legeżyńska & M. Zajączkowski, 2005. Shallow sublittoral macrozoobenthos in Kongsfjord, West Spitsbergen, Svalbard. Polish Polar Research 26: 137–155.Google Scholar
  56. Kaufman, M. R., R. R. Gradinger, B. A. Bluhm & D. M. O’Brien, 2008. Using stable isotopes to assess carbon and nitrogen turnover in the Arctic sympagic amphipod Onisimus littoralis. Oecologia 158: 11–22.PubMedGoogle Scholar
  57. Kędra, M., J. Legeżyńska & W. Walkusz, 2011. Shallow winter and summer macrofauna in a high Arctic fjord (79°N, Spitsbergen). Marine Biodiversity 41: 425–439.Google Scholar
  58. Klages, M. & J. Gutt, 1990. Comparative studies on the feeding behaviour of high Antarctic amphipods (Crustacea) in laboratory. Polar Biology 11: 73–79.Google Scholar
  59. Knox, G. A. & J. K. Lowry, 1977. A comparison between the benthos of the Southern and the North Polar Ocean with special reference to the Amphipoda and the Polychaeta. In Dunbar, M. J. (ed.), Polar Oceans. Arctic Institute of North America, Montreal: 423–462.Google Scholar
  60. Legeżyńska, J., 2008. Food resources partitioning among Arctic sublittoral lysianassoid amphipods in summer. Polar Biology 31: 663–670.Google Scholar
  61. Legeżyńska, J., J. M. Węsławski & P. Presler, 2000. Benthic scavengers collected by baited traps in the high Arctic. Polar Biology 23: 539–544.Google Scholar
  62. Lippert, H., K. Iken, E. Rachor & C. Wiencke, 2001. Macrofauna associated with macroalgae in the Kongsfjord (Spitsbergen). Polar Biology 24: 512–522.Google Scholar
  63. Lønne, O. J. & G. W. Gabrielsen, 1992. Summer diet of seabirds feeding in sea-ice-covered waters near Svalbard. Polar Biology 12: 685–692.Google Scholar
  64. Lopez, G. & R. Elmgren, 1989. Feeding depths and organic absorption for the deposit-feeding benthic amphipods Pontoporeia affinis and Pontoporeia femorata. Limnology and Oceanography 34: 982–991.Google Scholar
  65. Lovvorn, J. R., L. W. Cooper, M. L. Brooks, C. C. DeRuyck, J. K. Bump & J. M. Grebmeier, 2005. Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea. Marine Ecology Progress Series 291: 135–150.Google Scholar
  66. Lowry, J. K. & H. E. Stoddart, 2002. The Lysianassoid amphipod genera Lepidepecreoides and Lepidepecreum in Southern Waters (Crustacea; Lysianassidae: Tryphosinae). Records of Australian Museum 54: 335–364.Google Scholar
  67. MacNeil, C., J. T. A. Dick & R. W. Elwood, 1997. The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biological Review 72: 349–364.Google Scholar
  68. McMahon, K. W., W. G. Ambrose Jr, B. J. Johnson, M.-Y. Sun, G. L. Lopez, L. M. Clough & M. L. Carroll, 2006. Benthic community response to ice algae and phytoplankton in Ny-Alesund, Svalbard. Marine Ecology Progress Series 310: 1–14.Google Scholar
  69. Mills, E. L., 1971. Deep-sea Amphipoda from the Western North Atlantic Ocean. The family Ampeliscidae. Limnology and Oceanography 16(2): 357–386.Google Scholar
  70. Mincks, S. L., C. R. Smith & D. J. DeMaster, 2005. Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’. Marine Ecology Progress Series 300: 3–19.Google Scholar
  71. Mincks, S. L., C. R. Smith, R. M. Jeffreys & P. Y. G. Sumida, 2008. Trophic structure on the West Antarctic Peninsula shelf: detrivory and benthic inertia revealed by δ13C and δ15N analysis. Deep-Sea Research II 55: 2502–2514.Google Scholar
  72. Mintenbeck, K., T. Brey, U. Jacob, R. Kunst & U. Struck, 2008. How to account for the lipid effect on carbon stable-isotope ratio (δ13C): sample treatment effect and model bias. Journal of Fish Biology 72: 815–830.Google Scholar
  73. Moens, T., S. Bouillon & F. Gallucci, 2005. Dual stable isotope abundances unravel trophic position of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 85: 1401–1407.Google Scholar
  74. Moore, P. G. & P. S. Rainbow, 1984. Ferritin crystals in the gut caeca of Stegocephaloides christianiensis Boeck and other Stegocephalidae (Amphipoda: Gammaridea): a functional interpretation. Philosophical Transactions of the Royal Society B: Biological Sciences: B 306: 219–245.Google Scholar
  75. Moore, P. G., P. S. Rainbow & W. Vader, 1994. On the feeding and comparative biology of iron in coelenterate-associated gamaridean Amphipoda (Crustacea) from N. Norway. Journal of the Marine Biological Association of the United Kingdom 178: 205–231.Google Scholar
  76. Myers, A. A. & J. K. Lowry, 2003. A phylogeny and a new classification of the Corophiidea Leach, 1814 (Amphipoda). Journal of Crustacean Biology 23: 443–485.Google Scholar
  77. Nelson, M. M., C. F. Phleger, B. Mooney & P. D. Nichols, 2000. Lipids of gelatinous antarctic zooplankton: Cnidaria and Ctenophora. Lipids 35: 551–559.PubMedGoogle Scholar
  78. Nelson, M. M., B. Mooney, J. D. Nichols & C. F. Phleger, 2001. Lipids of Antarctic Ocean amphipods: food chain interactions and the occurrence of novel biomarkers. Marine Chemistry 73: 53–64.Google Scholar
  79. Norkko, A., S. F. Thrush, V. J. Cummings, M. N. Gibbs, N. L. Andrew, J. Norkko & A. M. Schwarz, 2007. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88: 2810–2820.PubMedGoogle Scholar
  80. Nygård, H., M. Vihtakari & J. Berge, 2009. Life history of Onisimus caricus (Amphipoda, Lysianassoidea) in a high Arctic fjord. Aquatic Biology 5: 63–74.Google Scholar
  81. Nygård, H., J. Wallenchus, L. Camus, Ø. Varge & J. Berge, 2010. Annual routines and life history of the amphipod Onisimus litoralis: seasonal growth, body composition and energy budget. Marine Ecology Progress Series 417: 115–126.Google Scholar
  82. Nyssen, F., T. Brey, G. Lepoint, J.-M. Bouquegneau, C. De Broyer & P. Dauby, 2002. A stable isotope approach to the eastern Weddell Sea trophic web: focus on banthic amhipods. Polar Biology 25: 280–287.Google Scholar
  83. Nyssen, F., T. Brey, P. Dauby & M. Graeve, 2005. Trophic position of Antarctic amphipods—enhanced analysis by a 2-dimentional biomarker assay. Marine Ecology Progress Series 300: 135–145.Google Scholar
  84. Oliver, J. S. & P. N. Slattery, 1985. Destruction and opportunity on the sea floor: effects of gray whale feeding. Ecology 66: 1965–1975.Google Scholar
  85. Palerud, P., B. Gulliksen, T. Brattegard, J.-A. Sneli & W. Vader, 2004. The marine macro-organisms in Svalbard waters. In Prestrud, P., H. Strom & H. V. Goldman (eds), A Cataloue of the Terrestrial and Marine Animals of Svalbard. Norwegian Polar Institute, Tromso: 5–56.Google Scholar
  86. Percy, J. A., 1979. Seasonal changes in organic composition and caloric content of an Arctic marine amphipod, Onisimus (= Boeckosimus) affinis H. J. Hansen. Journal of Experimental Marine Biology and Ecology 40: 183–192.Google Scholar
  87. Piepenburg, D., 2005. Recent research on Arctic benthos: common notions need to be revised. Polar Biology 28: 733–755.Google Scholar
  88. Pike, D. & H. E. Welch, 1990. Spatial and temporal distribution of sub-ice macrofauna in the Barrow Strait area, Northwest Territories. Canadian Journal of Fisheries and Aquatic Sciences 47: 81–91.Google Scholar
  89. Poltermann, M., 2001. Arctic sea ice as feeding ground for amphipods-food sources and strategies. Polar Biology 24: 89–96.Google Scholar
  90. Premke, K., M. Klages & W. E. Arntz, 2006. Aggregations of Arctic dep-sea scavengers at large food falls: temporal distribution, consumption rates and population structure. Marine Ecology Progress Series 325: 121–135.Google Scholar
  91. Quijón, P. A., M. C. Kelly & P. V. R. Snelgrove, 2008. The role of sinking phytoplankton phytodetritus in structuring shallow-water benthic communities. Journal of Experimental Marine Biology and Ecology 366: 134–145.Google Scholar
  92. Renaud, P. E., M. Tessmann, A. Evenset & G. N. Christensen, 2011. Benthic food-web structure of an Arctic fjord (Kongsfjorden, Svalbard). Marine Biology Research 7: 13–26.Google Scholar
  93. Richoux, N. B., D. Deibel, R. J. Thompson & C. C. Parrish, 2005. Seasonal and developmental variation in the fatty acid composition of Mysis mixta (Mysidacea) and Acanthostepheia malmgreni (Amphipoda) from the hyperbenthos of a cold-ocean environment (Conception Bay, Newfoundland). Journal of Plankton Research 27: 719–733.Google Scholar
  94. Sainte-Marie, B., 1984. Morphological adaptations for carrion feeding in foru species of littoral and circalittoral lysianassid amphipods. Canandian Journal of Zoology 62: 1668–1674.Google Scholar
  95. Sainte-Marie, B., 1986. Feeding and swimming of lysianassid amphipods in a shallow cold-water bay. Marine Biology 91: 219–229.Google Scholar
  96. Sainte-Marie, B., 1987. Meal size and feeding rate of the shallow-water lysianassid Anonyx sarsi (Crustacea: Amphipoda). Marine Ecology Progress Series 40: 209–219.Google Scholar
  97. Sainte-Marie, B. & P. Brunel, 1985. Suprabenthic gradients of swimming activity by cold-water gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence. Marine Ecology Progress Series 23: 57–69.Google Scholar
  98. Sainte-Marie, B. & G. Lamarche, 1985. The diets of six species of the carrion-feeding lysianassid amphipods genus Anonyx and their relation with morphology and swimming behavior. Sarsia 70: 119–126.Google Scholar
  99. Schmidt, K., A. Atkinson, D. Stübing, J. W. McClelland & J. P. Montoya, 2003. Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of stable isotope approach. Limnology and Oceanography 48: 277–289.Google Scholar
  100. Schram, F. R., 1986. Crustacea. Oxford University Press, New York.Google Scholar
  101. Scott, C. L., S. Falk-Pettersen, J. R. Sargent, H. Hop, O. J. Lønne & M. Poltermann, 1999. Lipids and trophic interactions of ice fauna and pelagic zooplankton in the marginal ice zone of the Barents Sea. Polar Biology 21: 65–70.Google Scholar
  102. Scott, C. L., S. Falk-Pettersen, B. Gulliksen, O. J. Lønne & J. R. Sargent, 2001. Lipid indicators of the diet of the sympagic amphipod Gammarus wilkitzkii in the Marginal Ice Zone and in open waters of Svalbard (Arctic). Polar Biology 24: 572–576.Google Scholar
  103. Scott, C. L., S. Kwaśniewski, S. Falk-Petersen & J. R. Sargent, 2002. Lipids and fatty acids in the copepod Jaschnovia brevis (Jaschnov) and in particulates from Arctic waters. Polar Biology 25: 65–71.Google Scholar
  104. Slattery, P. N. & J. S. Oliver, 1986. Scavenging and other feeding habits of lysianassid amphipods (Orchomene spp.) from McMurdo Sound, Antarctica. Polar Biology 6: 171–177.Google Scholar
  105. Smale, D. A., D. K. A. Barnes, K. P. P. Fraser, P. J. Mann & M. P. Brown, 2007. Scavenging in Antarctica: intense variation between sites and seasons in shallow benthic necrophagy. Journal of Experimental Marine Biology and Ecology 349: 405–417.Google Scholar
  106. Søreide, J. E., T. Tamelander, H. Hop, K. A. Hobson & I. Johansen, 2006a. Sample preparation effect on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Marine Ecology Progress Series 328: 17–28.Google Scholar
  107. Søreide, J. E., H. Hop, M. L. Carroll, S. Falk-Petersen & E. N. Hegseth, 2006b. Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-sources food web model. Progress in Oceanography 71: 59–87.Google Scholar
  108. Steele, D. H. & V. J. Steele, 1993. Biting mechanism of the amphipod Anonyx (Crustacea: Amphipoda: Lysianassoidea). Journal of Natural History 27: 851–860.Google Scholar
  109. Stevens, C. J., D. Deibel & C. C. Parrish, 2004. Species-specific differences in lipid composition and omnivory indices in Arctic copepods collected in deep water during autumn (North Water Polynya). Marine Biology 144: 905–915.Google Scholar
  110. Stransky, B. & J. Svavarsson, 2010. Diversity and species composition of perecarids (Crustacea: Malacostraca) on the South Greenland Shelf: spatial and temporal variation. Polar Biology 33: 125–139.Google Scholar
  111. Stübing, D. & W. Hagen, 2003. Fatty acid biomarker ratios—suitable trophic indicators in Antarctic euphausiids? Polar Biology 26: 774–782.Google Scholar
  112. Suhr, S. B., D. W. Pond, A. J. Gooday & C. R. Smith, 2003. Selective feeding by benthic foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. Marine Ecology Progress Series 262: 153–162.Google Scholar
  113. Tamelander, T., P. E. Renaud, H. Hop, M. L. Carroll, W. G. Ambrose Jr & K. A. Hobson, 2006. Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone revealed by stable carbon and nitrogen isotope measurements. Marine Ecology Progress Series 310: 33–46.Google Scholar
  114. Torres, J. J., J. Donnelly, T. L. Hopkins, T. M. Lancraft, A. V. Aarset & D. G. Ainley, 1994. Proximate composition and overwintering strategies of Antarctic micronectonic Crustacea. Marine Ecology Progress Series 113: 221–232.Google Scholar
  115. Tzvetkova, N. L., 1995. The general distribution of Amphipoda gammaridea in the North and Far-East Russian Seas. Polish Archives of Hydrobiology 42: 335–346.Google Scholar
  116. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N-enrichment: a meta-analysis. Oecologia 136: 169–182.PubMedGoogle Scholar
  117. Watling, L., 1993. Functional morphology of the amphipod mandible. Journal of Natural Hstory 27: 837–849.Google Scholar
  118. Werner, I., 2006. Seasonal dynamics, cryo-pelagic interactions and metabolic rates of arctic pack-ice and under-ice fauna. A review. Polarforschung 75: 1–19.Google Scholar
  119. Werner, I., H. Auel & R. Kiko, 2004. Occurrence of Anonyx sarsi (Amphipoda: Lysianassoidea) below Arctic pack ice: an example for cryo-benthic coupling? Polar Biology 27: 474–481.Google Scholar
  120. Węsławski, J. M., 1990. Distribution and ecology of South Spitsbergen coastal marine Amphipoda (Crustacea). Polish Archives of Hydrobiology 37: 503–519.Google Scholar
  121. Węsławski, J. M. & J. Legeżyńska, 1998. Glaciers caused zooplankton mortality? Journal of Plankton Research 20: 1233–1240.Google Scholar
  122. Wessels, H., W. Hagen, M. Molis, C. Wiencke & U. Karsten, 2006. Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. Journal of Experimental Marine Biology and Ecology 329: 20–33.Google Scholar
  123. Wiencke, C. & G. Fisher, 1990. Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Marine Ecology Progress Series 65: 283–292.Google Scholar
  124. Włodarska-Kowalczuk, M., P. Kukliński, M. Ronowicz, J. Legeżyńska & S. Gromisz, 2009. Assessing species richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). Polar Biology 32: 897–905.Google Scholar
  125. Würzberg, L., J. Peters, M. Schüller & A. Brandt, 2011. Diet insights of deep-sea polychaetes derived from fatty acid analyses. Deep-Sea Research II 58: 153–162.Google Scholar
  126. Yu, O. K., H.-L. Suh & Y. Shirayama, 2003. Feeding ecology of three amphipod species Synchelidium lenorostralum, S. trioostegtum and Gitanopsis japonica in the surf zone of a sandy shore. Marine Ecology Progress Series 258: 189–199.Google Scholar
  127. Zajączkowski, M. J. & J. Legeżyńska, 2001. Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43: 341–351.Google Scholar
  128. Zimmerman, R., R. Gibson & J. Harrington, 1979. Herbivory and detrivory among gammaridean amphipods from a Florida seagrass community. Marine Biology 54: 41–47.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Joanna Legeżyńska
    • 1
    Email author
  • Monika Kędra
    • 1
  • Wojciech Walkusz
    • 1
    • 2
  1. 1.Institute of OceanologyPolish Academy of SciencesSopotPoland
  2. 2.Department of Fisheries and Oceans501 University CrescentWinnipegCanada

Personalised recommendations