, Volume 684, Issue 1, pp 161–175 | Cite as

Thermal impact of a nuclear power plant in a coastal area in Southeastern Brazil: effects of heating and physical structure on benthic cover and fish communities

  • Tatiana Pires Teixeira
  • Leonardo Mitrano Neves
  • Francisco Gerson AraújoEmail author
Primary Research Paper


The influence of a nuclear power plant’s cooling water and physical structure on benthic cover and fish communities were assessed in a coastal area in Southeastern Brazil. We hypothesised that thermal discharges decrease benthic cover and consequently, change the associated rocky reef fish assemblage structure and that physical structure is directly associated with fish richness and diversity. Twelve sites at different distances (close, near and far) from thermal discharge and types of physical structure (low and high) were sampled by visual census. The average surface temperature at the most impacted sites (close) ranged from 30.5 to 31°C, while at far sites it ranged from 25.5 to 28.5°C. Although thermal influences have decreased benthic cover, and consequently, decreased fish richness and diversity, we found that in near and far sites that had complex habitat structures (physical and benthic cover) fish communities were unaffected. The greatest abundances of Eucinostomus argenteus, Mugil curema and Sphoeroides greeleyi were associated with the highest temperatures at the most impacted sites. In contrast, Abudefduf saxatilis, Chaetodon striatus, Stegastes fuscus, Diplodus argenteus and Malacoctenus delalandii were more abundant at high structured sites far from thermal discharges. Our data support the hypothesis that thermal discharge decreases benthic cover, fish richness and diversity but physical structure, when coupled with high diversity and abundant benthic cover, minimised thermal effects on fish communities.


Thermal pollution Structural complexity Habitat Rocky shore fishes 



We thank Hamilton Hissa Pereira and Rafael Jardim Albieri for their help in the field work, and to technical staff of the Laboratory of Fish Ecology, University Federal Rural of Rio de Janeiro for useful help in the laboratory. This study was partially financed by CNPq—Brazilian National Council for Research Development (Proc. 302555/2008-0).


  1. Aburto-Opereza, O. & E. F. Balart, 2001. Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Marine Ecology 22: 283–305.Google Scholar
  2. Alvarez-Lajonchere, L., E. Trewavas & G. J. Howes, 1992. Mugil curema and Mugil liza Valenciennes in Cuvier and Valenciennes, 1836 (Osteichthyes, Perciformes): proposed conservation of the specific names. Bulletin of Zoological Nomenclature 49: 271–275.Google Scholar
  3. Bamber, R. N. & J. F. Spencer, 1984. The benthos of a coastal power station thermal discharge canal. Journal of the Marine Biological Association of the United Kingdom 64: 603–623.CrossRefGoogle Scholar
  4. Bandeira, J. V., A. A. Barreto, V. L. Bomtempo, R. M. Moreira & L. H. Salim, 2003. The performance of a surface jet on a closed bay: the reality compared with the theory. Proceedings of 6th international conference on coastal and port engineering in developing countries, Colombo, 15 September 2003, CD-ROM, COPEDEC VI, Colombo, Sri LankaGoogle Scholar
  5. Beitinger, T. L., W. A. Bennett & R. W. McCauley, 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58: 237–275.CrossRefGoogle Scholar
  6. Bell, J. D., M. Westoby & A. S. Steffe, 1987. Fish larvae settling in seagrass. Do they discriminate between bed of different leaf density? Journal of Experimental Marine Biology and Ecology 111: 133–134.CrossRefGoogle Scholar
  7. Benetti, D. D. & E. B. F. Neto, 1991. Preliminary results on growth of mullets (Mugil liza and Mugil curema) fed artificial diets. World Aquaculture 22: 55–57.Google Scholar
  8. Bennett, W. A. & F. W. Judd, 1992. Comparison of methods for determining low temperature tolerance: experiments with pinfish, Lagodon rhomboids. Copeia 1992: 1059–1065.CrossRefGoogle Scholar
  9. Bruno, J. F., E. R. Selig, K. S. Casey, C. A. Page, B. L. Willis, C. D. Harvell, H. Sweatman & A. M. Melendy, 2007. Thermal stress and coral cover as drivers of coral disease outbreaks. Public Library of Science (PLoS) Biology 5(6): e124.Google Scholar
  10. Cabaitan, P. C., E. D. Gomez & P. M. Aliño, 2008. Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. Journal of Experimental Marine Biology and Ecology 357: 85–98.CrossRefGoogle Scholar
  11. Chabanet, P., H. Ralambondrainy, M. Amanieu, G. Faure & R. Galzin, 1997. Relationships between coral reef substrata and fish. Coral Reefs 16: 93–102.CrossRefGoogle Scholar
  12. Chapman, M. G., A. J. Underwood & G. A. Skilleter, 1995. Variability at different spatial scales between a subtidal assemblage exposed to the discharge of sewage and two control assemblages. Journal of Experimental Marine Biology and Ecology 189: 103–122.CrossRefGoogle Scholar
  13. Chaves, P. T. C. & G. Otto, 1999. The mangrove as a temporary habitat for fish: the Eucinostomus species at Guaratuba Bay, Brazil (25°52′S; 48°39′W). Brazilian Archives of Biology and Technology 42: 61–68.Google Scholar
  14. Chou, Y., T. Y. Lin, C. T. A. Chen & L. L. Liu, 2004. Effect of nuclear power plant thermal effluent on marine sessile invertebrate communities in Southern Taiwan. Journal of Marine Science and Technology 12: 448–452.Google Scholar
  15. Clarke, K. R. & R. M. Warwick, 1994. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Natural Environment Research Council, Plymouth.Google Scholar
  16. Contador, J. F. L., 2005. Adaptive management, monitoring, and the ecological sustainability of a thermal-polluted water ecosystem: a case in SW Spain. Environmental Monitoring and Assessment 104: 19–35.CrossRefGoogle Scholar
  17. De Vries, P., J. E. Tamis, A. J. Murk & M. G. D. Smit, 2008. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment. Environmental Toxicology and Chemistry 27: 2591–2598.PubMedCrossRefGoogle Scholar
  18. Dembski, S., G. Masson, D. Monnier, P. Wagner & J. C. Pihan, 2006. Consequences of elevated temperatures of life-history traits of an introduced fish, pumpkinseed Lepomis gibbosus. Journal of Fish Biology 69: 331–346.CrossRefGoogle Scholar
  19. Devinny, J. S., 1980. Effects of thermal effluents on communities of benthic marine macro-algae. Journal of Environmental Management 11: 225–242.Google Scholar
  20. Encina, L., A. Rodríguez-Ruiz & C. Granado-Lorencio, 2008. Distribution of common carpina Spanish reservoir in relation to thermal loading from a nuclear power plant. Journal of Thermal Biology 33: 444–450.CrossRefGoogle Scholar
  21. Ferreira, C. E. L., J. E. A. Gonçalves & R. Coutinho, 2001. Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental Biology of Fishes 61: 353–369.CrossRefGoogle Scholar
  22. Friedlander, A. M. & J. D. Parrish, 1998. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology 26: 65–84.Google Scholar
  23. Gaelzer, L. R. & I. R. Zalmon, 2003. The influence of wave gradient on the ichthyofauna of Southeastern Brazil: focusing the community structure in surf-zone. Journal of Coastal Research 35: 456–462.Google Scholar
  24. García-Charton, J. A., A. Pérez-Ruzafa, P. Sánchez-Jerez, J. T. Bayle-Sempere, O. Reñones & D. Moreno, 2004. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Marine Biology 144: 161–182.CrossRefGoogle Scholar
  25. Gladfelter, W. B. & E. H. Gladfelter, 1978. Fish community structure as a function of habitat structure on West Indian patch reefs. Revista de Biologia Tropical 26: 65–84.Google Scholar
  26. Gladfelter, W. B., J. C. Ogden & E. H. Gladfelter, 1980. Similarity and diversity among coral reef communities: a comparison between tropical western Atlantic (Virgin Islands) and tropical central Pacific (Marshall Islands) patch reefs. Ecology 61: 1156–1168.CrossRefGoogle Scholar
  27. Gratwicke, B. & M. R. Speight, 2005. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology 66: 650–667.CrossRefGoogle Scholar
  28. Grober-Dunsmore, R., T. K. Frazer, J. P. Beets, W. J. Lindberg, P. Zwick & N. A. Funicelli, 2008. Influence of landscape structure on reef fish assemblages. Landscape Ecology 23: 37–53.CrossRefGoogle Scholar
  29. Jenner, H. A., C. J. L. Taylor, M. Van Donk & M. Khalanski, 1997. Chlorination by products in chlorinated cooling water of some European costal power station. Marine Environmental Research 43: 279–293.CrossRefGoogle Scholar
  30. Jokiel, P. L. & S. L. Coles, 1974. Effects of heated effluent on hermatypic corals at Kahe Point, Oahu. Pacific Science 28: 1–18.Google Scholar
  31. Kohler, K. E. & S. M. Gill, 2006. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences 32: 1259–1269.CrossRefGoogle Scholar
  32. Krishnakumar, V., J. S. Sastry & G. N. Swamy, 1991. Implication of thermal discharges into the sea—a review. Indian Journal of Environmental Protection 11: 525–527.Google Scholar
  33. Laegdsgaard, P. & C. Johnson, 2001. Why do juvenile fish utilize mangrove habitats? Journal of Experimental Marine Biology and Ecology 257: 229–253.PubMedCrossRefGoogle Scholar
  34. Langford, T. E. L., 1990. Ecological Effects of Thermal Discharges. Elsevier, London.Google Scholar
  35. Lardicci, C., F. Rossi & F. Maltagliati, 1999. Detection of thermal pollution: variability of benthic communities at two different spatial scales in an area influenced by a coastal power station. Marine Pollution Bulletin 38: 296–303.CrossRefGoogle Scholar
  36. Laws, E. A., 1993. Aquatic Pollution—An Introductory Text. Wiley, New York.Google Scholar
  37. Letourneur, Y., 1996. Dynamics of fish communities on Reunion fringing reefs, Indian Ocean: 1. Patterns of spatial distribution. Journal of Experimental Marine Biology and Ecology 195: 1–30.CrossRefGoogle Scholar
  38. Logue, J., P. Tiku & A. R. Cossins, 1995. Heat injury and resistance adaptation in fish. Journal of Thermal Biology 20: 191–197.CrossRefGoogle Scholar
  39. Lubbers, L., W. R. Boynton & W. M. Kemp, 1990. Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants. Marine Ecology Progressive Series 65: 1–14.CrossRefGoogle Scholar
  40. Lucca, E. V. D., J. V. Bandeira, J. A. Lorenzzetti, R. C. Moreira, R. M. Castro, L. H. Salim, O. D. Z. Júnior & E. S. C. Esposito, 2005. Uso de sensor hiperespectral aerotransportado no monitoramento da pluma termal oceânica decorrente da descarga de refrigeração da central nuclear de Angra dos Reis. Revista Brasileira de Cartografia 57: 48–55.Google Scholar
  41. Luksiene, D. & O. Sandström, 1994. Reproductive disturbance in a roach (Rutilus rutilus) population affected by cooling water discharge. Journal of Fish Biology 45: 13–625.CrossRefGoogle Scholar
  42. Madenjian, C. P., D. J. Jude & F. J. Tesar, 1986. Intervention analysis of power-plant impact on fish populations. Canadian Journal of Fisheries and Aquatic Sciences 43: 819–829.CrossRefGoogle Scholar
  43. Magurran, A. E., 1988. Ecological Diversity and Its Measurement. Croom Helm, London.Google Scholar
  44. Mahadevan, S., 1980. A study on the effects of power plant thermal discharges on benthic infaunal communities at Big Bend, Tampa Bay (Florida). Florida Science 43: 7–8.Google Scholar
  45. Mariazzi, A. A., J. L. Donadelli, P. Arenas, M. A. Di Siervi & C. Bonetto, 1992. Impact of a nuclear power plant on water quality of Embalse del Rio Tercero Reservoir, (Cordoba, Argentina). Hydrobiologia 246: 129–140.CrossRefGoogle Scholar
  46. McCormick, M. I., 1994. Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Marine Ecology Progress Series 112: 87–96.CrossRefGoogle Scholar
  47. Mora, C. & A. F. Ospína, 2001. Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Marine Biology 139: 765–769.CrossRefGoogle Scholar
  48. Munday, P. L., G. P. Jones, M. S. Pratchett & A. J. Williams, 2008. Climate change and the future for coral reef fishes. Fish and Fisheries 9: 261–285.CrossRefGoogle Scholar
  49. Öhman, M. C. & A. Rajasuriya, 1998. Relationships between habitat structure and fish communities on coral and sandstone reefs. Environmental Biology of Fishes 49: 45–61.CrossRefGoogle Scholar
  50. Ornellas, A. B. & R. Coutinho, 1998. Spatial and temporal patterns of distribution and abundance of a tropical fish assemblage in a seasonal Sargassum bed, Cabo Frio Island, Brazil. Journal of Fish Biology 53(Suppl A): 198–208.Google Scholar
  51. Ospina, A. F. & C. Mora, 2004. Effect of body size on reef fish tolerance to extreme low and high temperatures. Environmental Biology of Fish 70: 339–343.CrossRefGoogle Scholar
  52. Penaz, M., V. Barus & M. Prokes, 1999. Changes in the structure of fish assemblages in a river used for energy production. Regulated Rivers-Research & Management 15: 169–180.CrossRefGoogle Scholar
  53. Qian, S., H. Chen, X. Zhao & Q. Zhang, 1993. A study of the effect of thermal pollution on seaweeds. Journal Ocean University of Qingdao 23: 22–34.Google Scholar
  54. Roberts, C. M. & R. F. G. Ormond, 1987. Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series 41: 1–8.CrossRefGoogle Scholar
  55. Robertson, A. I., 1984. Trophic interactions between the fish fauna and macrobenthos of an eelgrass community in Western Port, Victoria. Aquatic Botany 18: 135–153.CrossRefGoogle Scholar
  56. Rong-Quen, J., C. Jeng-Ping, L. Chun-Yu & S. Kwang-Tsao, 2001. Long-term monitoring of the coral reef fish communities around a nuclear power plant. Aquatic Ecology 35: 233–243.CrossRefGoogle Scholar
  57. Ruttenberg, B. I., A. J. Haupt, A. I. Chiriboga & R. R. Warner, 2005. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145: 394–403.PubMedCrossRefGoogle Scholar
  58. Sandstrom, O., I. Abrahamsson, J. Andersson & M. Vetemaa, 1997. Temperature effects on spawning and egg development in Eurasian perch. Journal Fish Biology 51: 1015–1024.CrossRefGoogle Scholar
  59. Schneider, F. I. & K. H. Mann, 1991. Species specific relationships of invertebrates to vegetation in a seagrass bed. I, Correlational studies. Journal of Experimental Marine Biology and Ecology 145: 101–117.CrossRefGoogle Scholar
  60. Schubel, J. R., C. C. Coutant & P. M. J. Woodhead, 1978. Thermal effects of entrainment. In Schubel, J. R. & B. C. Marcy (eds), Power Plant Entrainment—A Biological Assessment. Academic Press Inc., New York: 19–93.Google Scholar
  61. Shuter, B. J., D. A. Wismer, H. A. Regier & J. E. Matuszek, 1985. An application of ecological modeling: impact of thermal effluent on a smallmouth bass population. Transactions of the American Fisheries Society 114: 63–651.CrossRefGoogle Scholar
  62. Sokal, R. R. & J. Rohlf, 1998. Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman, New York.Google Scholar
  63. Suresh, K., M. S. Ahamed, G. Durairaj & K. V. K. Nair, 1993. Impact of power plant heated effluent on the abundance of sedentary organism, off Kalpakkam, east coast of India. Hydrobiologia 268: 109–114.CrossRefGoogle Scholar
  64. Teixeira, T. P., L. M. Neves & F. G. Araújo, 2009. Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay, Brazil. Marine Environmental Research 68: 188–195.PubMedCrossRefGoogle Scholar
  65. Tittensor, D. P., F. Micheli, M. Nyström & B. Worm, 2007. Human impacts on the species–area relationship in reef fish assemblages. Ecological Letters 10: 760–772.CrossRefGoogle Scholar
  66. Underwood, A. J., 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.Google Scholar
  67. Verlaque, M., G. Giraud & C. F. Boudouresque, 1981. Effects of a thermal power plant on the Mediterranean marine phythobenthos: the area of high frequency temperature changes. Botanica Marina 24: 69–87.CrossRefGoogle Scholar
  68. Verones, F., M. M. Hanafiah, S. Pfister, M. A. J. Huijbregts, G. J. Pelletier & A. Koehler, 2010. Characterization factors for thermal pollution in freshwater aquatic environments. Environmental Science & Technology 44: 9364–9369.CrossRefGoogle Scholar
  69. Vilanova, E., M. M. Pinto, M. P. Curbelo-Fernandez & S. H. G. Silva, 2004. The impact of a nuclear power plant discharge on the sponge community of a tropical Bay (SE Brazil). Bollettino dei Musei e degli Istituti Biologici dello Universitá di Genova 68: 647–654.Google Scholar
  70. Wright, J. F., J. M. R. Winder, J. M. Gunn, J. H. Blackburn, K. L. Symes & R. T. Clarke, 2000. Minor local effects of a river Thames power station on the macroinvertebrate fauna. Regulated Rivers: Research & Management 16: 159–174.CrossRefGoogle Scholar
  71. Zalmon, I. R., R. Novelli, M. P. Gomes & V. V. Faria, 2002. Experimental results of an artificial reef programme on the Brazilian coast north of Rio de Janeiro. ICES Journal of Marine Science 59: 83–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tatiana Pires Teixeira
    • 1
  • Leonardo Mitrano Neves
    • 1
  • Francisco Gerson Araújo
    • 1
    Email author
  1. 1.Laboratório de Ecologia de Peixes, Universidade Federal Rural do Rio de JaneiroSeropédicaBrazil

Personalised recommendations