, Volume 684, Issue 1, pp 97–107 | Cite as

Chemical defence by mono-prenyl hydroquinone in a freshwater ciliate, Spirostomum ambiguum

  • Federico Buonanno
  • Graziano Guella
  • Cristian Strim
  • Claudio OrtenziEmail author
Primary Research Paper


Several species of ciliates produce and accumulate low molecular weight toxic compounds in specialised membrane-bound ejectable organelles: extrusomes. These compounds can be used in predator–prey interaction for killing prey as well as for chemical defence. Here, we describe the isolation and characterisation of 2-(3-methylbut-2-enyl)benzene-1,4-diol(mono-prenyl hydroquinone), the extrusomal defensive toxin of the freshwater heterotrich ciliate Spirostomum ambiguum. The toxin was purified at homogeneity by RP-HPLC, and its structural characterisation was carried out through NMR and MS measurements. In vivo experiments involving S. ambiguum and Climacostomum virens in predator–prey interaction, and the analysis of cytotoxic activity of mono-prenyl hydroquinone on a panel of free-living freshwater ciliates, indicated that the toxin is very effective in S. ambiguum’s chemical defence.


Prenyl hydroquinone Extrusomes Chemical defence Secondary metabolites Natural compounds 



Financial support was provided by the CARIMA Foundation (Fondazione Cassa di Risparmio della Provincia di Macerata) and Regione Marche. The authors are very grateful to Dr. Gill Philip for the linguistic revision of the text.


  1. Abe, Y. & K. Mori, 2001. Simple synthesis of climacostol, a defense secretion by the ciliate Climacostomum virens. Bioscience, Biotechnology, and Biochemistry 65: 2110–2112.PubMedCrossRefGoogle Scholar
  2. Baby, J. & S. Sujatha, 2011. Pharmacologically important natural products from marine sponges. Journal of Natural Products 4: 5–12.Google Scholar
  3. Bohlmann, F. & K.-M. Kleine, 1966. Über ein neues Chinon aus höheren Pflanzen. Chemische Berichte 99: 885–888.CrossRefGoogle Scholar
  4. Buonanno, F., 2005. Variations in the efficiency of ciliate extrusomal toxins against a common ciliate predator, the catenulid Stenostomum sphagnetorum. Italian Journal of Zoology 72: 293–295.CrossRefGoogle Scholar
  5. Buonanno, F., 2009. Antipredator behavior of freshwater microturbellarian Stenostomum sphagnetorum against the predatory ciliate Dileptus margaritifer. Zoological Science 26: 443–447.PubMedCrossRefGoogle Scholar
  6. Buonanno, F., 2011. The changes in the predatory behavior of the microturbellarian Stenostomum sphagnetorum on two species of toxin-secreting ciliates of the genus Spirostomum. Biologia 66: 648–653.CrossRefGoogle Scholar
  7. Buonanno, F. & C. Ortenzi, 2010. The protozoan toxin climacostol and its derivatives: cytotoxicity studies on 10 species of free-living ciliates. Biologia 65: 675–680.CrossRefGoogle Scholar
  8. Buonanno, F., P. Saltalamacchia & A. Miyake, 2005. Defence function of pigmentocysts in the karyorelictid ciliate Loxodes striatus. European Journal of Protistology 41: 151–158.CrossRefGoogle Scholar
  9. Buonanno, F., L. Quassinti, M. Bramucci, C. Amantini, R. Lucciarini, H. Santoni & C. Iio, 2008. The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chemical Biological Interactions 176: 151–164.CrossRefGoogle Scholar
  10. Cameron, D. W. & A. G. Riches, 1995. Synthesis of stentorin. Tetrahedron Letters 36: 2331–2334.CrossRefGoogle Scholar
  11. Cervia, D., M. Garcia-Gil, E. Simonetti, G. Di Giuseppe, G. Guella, P. Bagnoli & F. Dini, 2007. Molecular mechanisms of euplotin C induced apoptosis: involvement of mitochondrial dysfunction, oxidative stress and proteases. Apoptosis 12: 1349–1363.PubMedCrossRefGoogle Scholar
  12. Cervia, D., G. Di Giuseppe, C. Ristori, D. Martini, G. Gambellini, P. Bagnoli & F. Dini, 2009. The secondary metabolite euplotin C induces apoptosis-like death in the marine ciliated protist Euplotes vannus. Journal of Eukaryotic Microbiology 56: 263–269.PubMedCrossRefGoogle Scholar
  13. Connon, S. J. & S. Blechert, 2003. Recent developments in olefin cross-metathesis. Angewandte Chemie International Edition 42: 1900–1923.CrossRefGoogle Scholar
  14. Dai, R., T. Yamazaki, I. Yamazaki & P.-S. Song, 1995. Initial spectroscopic characterization of the ciliate photoreceptor stentorin. Biochimica et Biophysica Acta 1231: 58–68.PubMedCrossRefGoogle Scholar
  15. De Rosa, S., A. De Giulio & C. Iodice, 1994. Biological effects of prenylated hydroquinones: structure-activity relationship studies in antimicrobial, brine shrimp, and fish lethality assays. Journal of Natural Products 57: 1711–1716.PubMedCrossRefGoogle Scholar
  16. Dettner, K., 2010. Chemical defense and toxins of lower terrestrial and freshwater animals. In Mander, L. & H.-W. Lui (eds), Comprehensive Natural Products II Chemistry and Biology, Vol. 4. Elsevier, Oxford: 387–410.CrossRefGoogle Scholar
  17. Fiorini, D., S. Giuli, E. Marcantoni, L. Quassinti, M. Bramucci, C. Amantini, G. Santoni, F. Buonanno & C. Ortenzi, 2010. A straightforward diastereoselective synthesis and evaluation of climacostol, a natural product with anticancer activities. Synthesis 9: 1550–1556.Google Scholar
  18. Foissner, W., H. Berger & F. Kohmann, 1992. Taxonomishe und ökologische Revision der Ciliaten des Saprobiensystems – Band II: Peritrichida, Heterotrichida, Odontostomatida. In Informationsberichte des Bayer (ed.), Heterotrichida. Bayerisches Landesamt für Wasserwirtschaft, München: 1–502.Google Scholar
  19. Giese, A. C., 1981. The photobiology of Blepharisma. In Smith, K. C. (ed.), Photochemical Photobiological Reviews. Plenum, New York: 139–180.Google Scholar
  20. Guella, G., R. Frassanito, I. Mancini, T. Sandron, L. Modeo, F. Verni, F. Dini & G. Petroni, 2010a. Keronopsamides, a new class of pigments from marine ciliates. European Journal of Organic Chemistry 3: 427–434.CrossRefGoogle Scholar
  21. Guella, G., D. Skropeta, G. Di Giuseppe & F. Dini, 2010b. Structures, biological activities and phylogenetic relationships of terpenoids from marine ciliates of the genus Euplotes. Marine Drugs 8: 2080–2116.PubMedCrossRefGoogle Scholar
  22. Guilivi, C. & E. Cadenas, 1994. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNAstrand-break formation. Biochemical Journal 301: 21–30.Google Scholar
  23. Harumoto, T., A. Miyake, N. Ishikawa, R. Sugibayashi, K. Zenfuku & H. Iio, 1998. Chemical defense by means of pigmented extrusomes in the ciliate Blepharisma japonicum. European Journal of Protistology 34: 458–470.CrossRefGoogle Scholar
  24. Hausmann, K., 1978. Extrusive organelles in protists. International Review of Cytology 52: 197–276.PubMedCrossRefGoogle Scholar
  25. Hausmann, K., 2002. Food acquisition, food ingestion and food digestion by protists. Japanese Journal of Protozoology 35: 85–95.Google Scholar
  26. Heide, L., 2009. Prenyl transfer to aromatic substrates: genetics and enzymology. Current Opinion in Chemical Biology 13: 171–179.PubMedCrossRefGoogle Scholar
  27. Henry, R. T. & B. K. Wallace, 1996. Different mechanisms of cell killing by redox cycling and arylating quinones. Archives of Toxicology 70: 482–489.PubMedCrossRefGoogle Scholar
  28. Howard, B. M., K. Clarkson & R. L. Bernstein, 1979. Simple prenylated hydroquinone derivatives from the marine urochordate Aplidium californicum. Natural anticancer and antimutagenic agents. Tetrahedron Letters 46: 4449–4452.CrossRefGoogle Scholar
  29. Iio, H., K. Zenfuku & T. Tokoroyama, 1995. A facile synthesis of stentorin, the photoreceptor of Stentor coeruleus. Tetrahedron Letters 36: 5921–5924.Google Scholar
  30. Lindquist, N., M. E. Hay & W. Fenical, 1992. Defence of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. Ecological Monographs 62: 547–568.CrossRefGoogle Scholar
  31. Masaki, M. E., S. Hiro, Y. Usuki, T. Harumoto, M. N. Terazima, F. Buonanno, A. Miyake & H. Iio, 2004. Climacostol, a defense toxin of Climacostomum virens (protozoa, ciliata), and its congeners. Tetrahedron 60: 7041–7048.CrossRefGoogle Scholar
  32. Miyake, A., 1981. Cell interaction by gamones in Blepharisma. In O’Day, D. H. & P. A. Horgen (eds), Sexual Interaction in Eukaryotic Microbes. Academic Press, New York: 95–129.Google Scholar
  33. Miyake, A., T. Harumoto, B. Slavi & V. Rivola, 1990. Defensive function of pigment granules in Blepharisma. European Journal of Protistology 25: 310–315.CrossRefGoogle Scholar
  34. Miyake, A., T. Harumoto & H. Iio, 2001. Defence function of pigment granules in Stentor coeruleus. European Journal of Protistology 37: 77–88.CrossRefGoogle Scholar
  35. Miyake, A., F. Buonanno, P. Saltalamacchia, M. E. Masaki & H. Iio, 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. European Journal of Protistology 39: 25–36.CrossRefGoogle Scholar
  36. Muto, Y., T. Matsuoka, A. Kida, Y. Okano & Y. Kirino, 2001. Blepharismins, produced by the protozoan, Blepharisma japonicum, form ion-permeable channels in planar lipid bilayer membranes. FEBS Letters 508: 423–426.PubMedCrossRefGoogle Scholar
  37. Muto, Y., Y. Tanabe, K. Kawai, Y. Okano & H. Iio, 2011. Climacostol inhibits Tetrahymena motility and mitochondrial respiration. Central European Journal of Biology 6: 99–104.CrossRefGoogle Scholar
  38. Pant, B., Y. Kato, T. Kumagai, T. Matsuoka & M. Sugiyama, 1997. Blepharismin produced by a protozoan Blepharisma functions as an antibiotic effective against methicillin-resistant Staphylococcus aureus. FEMS Microbiology Letters 155: 67–71.PubMedCrossRefGoogle Scholar
  39. Park, M., W. Fenical & M. E. Hay, 1992. Debromoisocymobarbatol, a new chromanol feeding deterrent from the marine alga Cymopolia barbata. Phytochemistry 31: 4115–4118.CrossRefGoogle Scholar
  40. Pietra, F., 2002. Biodiversity and natural product diversity. In: Baldwin, J. E. & R. M. Williams (eds), Taxonomy, phylogeny, and natural products. Elsevier, Oxford: 9–11.Google Scholar
  41. Pucciarelli, S., F. Buonanno, G. Pellegrini, P. Ballarini & C. Miceli, 2008. Biomonitoring of lake Garda: identification of ciliate species and symbiotic algae responsible for the “black-spot” bloom during the summer of 2004. Environmental Research 107: 194–200.PubMedCrossRefGoogle Scholar
  42. Rosati, G. & L. Modeo, 2003. Extrusomes in ciliates: diversification, distribution, and phylogenetic implications. Journal of Eukaryotic Microbiology 50: 383–402.PubMedCrossRefGoogle Scholar
  43. Scheepers, B. A., R. Klein & M. T. Davies-Coleman, 2006. Synthesis of triprenylated toluquinone and toluhydroquinone metabolites from a marine-derived Penicillium fungus. Tetrahedron Letters 47: 8243–8246.CrossRefGoogle Scholar
  44. Sera, Y., Y. Usuki & H. Iio, 2006. Synthetic studies on spirostomin, a defense toxin of Spirostomum teres. Nippon Kagakkai Koen Yokoshu 86: 1382.Google Scholar
  45. Sladić, D. & M. J. Gašić, 2006. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules 11: 1–33.PubMedCrossRefGoogle Scholar
  46. Sugibayashi, R. & T. Harumoto, 2000. Defensive function of trichocysts in Paramecium tetraurelia against heterotrich ciliate Climacostomum virens. European Journal of Protistology 36: 415–422.CrossRefGoogle Scholar
  47. Terazima, M. N. & T. Harumoto, 2004. Defense function of pigment granules in the ciliate Blepharisma japonicum against two predatory protists, Amoeba proteus (Rhizopodea) and Climacostomum virens (Ciliata). Zoological Science 21: 823–828.PubMedCrossRefGoogle Scholar
  48. Terencio, M. C., M. L. Ferrándiz, I. Posadas, E. Roig, S. De Rosa, A. De Giulio, M. Payá & M. J. Alcaraz, 1998. Suppression of leukotriene B4 and tumour necrosis factor alpha release in acute inflammatory responses by novel prenylated hydroquinone derivatives. Naunyn-Schmiedeberg’s Archives of Pharmacology 357: 565–572.PubMedCrossRefGoogle Scholar
  49. Tillmann, U., 2004. Interactions between planktonic microalgae and protozoan grazers. Journal of Eukaryotic Microbiology 51: 156–168.PubMedCrossRefGoogle Scholar
  50. Yang, H.-C., J. Yu, K.-B. Oh, D.-S. Shin, W.-J. Cho, J. Shin & S. Kim, 2007. Synthesis and evaluation of hydroquinone derivatives as inhibitors of isocitrate lyase. Archives of Pharmacal Researches 30: 955–961.CrossRefGoogle Scholar
  51. Yoshioka, K., S. Tominaga, U. Yoshiyuki, U. Yoshinosuke & H. Iio, 2008. Starter units of the biosynthesis of blepharismins: self-defence pigments of Blepharisma japonicum. Tetrahedron 64: 4103–4107.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Federico Buonanno
    • 1
  • Graziano Guella
    • 2
    • 3
  • Cristian Strim
    • 2
  • Claudio Ortenzi
    • 1
    Email author
  1. 1.Department of Education ScienceUniversity of MacerataMacerataItaly
  2. 2.Bioorganic Chemistry Laboratory, Department of PhysicsUniversity of TrentoPovo, TrentoItaly
  3. 3.Institute of Biophysics, CNRPovo, TrentoItaly

Personalised recommendations