Advertisement

Hydrobiologia

, Volume 683, Issue 1, pp 265–286 | Cite as

Seasonal and microhabitat influences on diatom assemblages and their representation in sediment traps and surface sediments from adjacent High Arctic lakes: Cape Bounty, Melville Island, Nunavut

  • Kailey A. Stewart
  • Scott F. Lamoureux
Primary Research Paper

Abstract

The spatial (i.e. microhabitat) and temporal (i.e. seasonal) characteristics of diatom assemblages in adjacent High Arctic lakes were studied intensively June–August 2004. These baseline data are used to improve understanding of modern diatom community dynamics, as well to inform paleoenvironmental reconstructions. Diatoms were collected approximately weekly through the melt season from each principal benthic substrate (moss/macrophyte, rock scrapes, littoral sediment), plankton, and sediment traps, and were compared to the uppermost 0.5 cm of a surface core obtained from the deepest part of the lake where sediment cores are routinely collected. Water samples were collected concurrently with diatom samples to investigate species–environment relationships. The lakes share approximately half of their common taxa, the most abundant overall in both lakes being small Cyclotella species. Results of detrended correspondence analysis (DCA) indicate that the largest gradient in species turnover existed between benthic and planktonic communities in both lakes, and that sediment trap and the surface core top samples most closely resemble the planktonic assemblage, with an additional contribution from the lotic environment. Our results indicate clear micro-spatial controls on species assemblages and a degree of disconnection between the benthos and deep lake sediments that manifests as an under-representation of benthic taxa in deep lake surface sediments. These findings are particularly relevant in the context of interpreting the paleoenvironmental record and assessing ecosystem sensitivity to continued climate change.

Keywords

Diatoms Arctic Seasonal Microhabitat Sediment trap Surface sediment 

Notes

Acknowledgements

This work was supported by a National Science and Engineering Research Council of Canada (NSERC) Discovery Grant to SFL, and a NSERC PGS-D Scholarship, Northern Scientific Training Program (NSTP) Award, Queen’s Graduate Award, and McDonald-Sinclair Travelling Scholarship to KAS. We would also like to thank the Polar Continental Shelf Project (PCSP/PPCP contribution # 011-15), Natural Resources Canada for logistical support in conducting field research. We gratefully acknowledge field assistance by D. Atkinson, J. Wall, G. Hambley, A. Forbes, J. Cockburn, D. Macdonald, E. Wells and F. Forsythe.

References

  1. ACIA, 2005. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK.Google Scholar
  2. Adams, J. K. & S. A. Finkelstein, 2010. Watershed-scale reconstruction of middle and late Holocene paleoenvironmental changes on Melville Peninsula, Nunavut, Canada. Quaternary Sci. Rev. 29: 2302–2314.CrossRefGoogle Scholar
  3. Anderson, N. J., 1989. A whole basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its palaeoecological implications. Journal of Ecology 77: 926–946.CrossRefGoogle Scholar
  4. Anderson, N. J., 1990. Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnology and Oceanography 35: 497–508.CrossRefGoogle Scholar
  5. Anderson, N. J., 1998. Variability of phosphorus-inferred profiles in a small lake basin and its implications for histories of lake eutrophication. Journal of Paleolimnology 20: 47–55.CrossRefGoogle Scholar
  6. Anneville, O., S. Souisse, S. Gammeter & D. Straile, 2004. Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-alpine lakes over a period of 28 years. Freshwater Biology 49: 98–115.CrossRefGoogle Scholar
  7. Antoniades, D. & M. S. V. Douglas, 2002. Characterization of high Arctic stream diatom assemblages from Cornwallis Island, Nunavut, Canada. Canadian Journal of Botany 80: 50–58.CrossRefGoogle Scholar
  8. Antoniades, D., P. B. Hamilton, M. S. V. Douglas & J. P. Smol, 2008. The freshwater floras of Prince Patrick, Ellef Ringnes, and northern Ellesmere Islands from the Canadian Arctic Archipelago. In Lange-Bertalot, H. (ed.), Iconigraphica Diatomologica, Diatoms of North America, Vol. 17. A.R.G. Gantner Verlag K.G., Germany.Google Scholar
  9. Antoniades, D., M. S. V. Douglas & J. P. Smol, 2009. Biogeographic distributions and environmental controls of stream diatoms in the Canadian Arctic Archipelago. Botany 87: 443–454.CrossRefGoogle Scholar
  10. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron & H. Bennion, 2001. Diatoms. In Smol, J. (ed.), Tracking Environmental Change Using Lake Sediments, Vol. 3: Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Netherlands: 155–202.Google Scholar
  11. Beyens, L. & B. Van de Vijver, 2000. First contribution to the diatom flora of High Arctic Hopen Island (Svalbard). Nova Hedwigia 70: 409–424.Google Scholar
  12. Birks, H. J. B., 1998. Numerical tools in palaeolimnology—progress, potentialities and problems. Journal of Paleolimnology 20: 307–332.CrossRefGoogle Scholar
  13. Bondarenko, N. A., 1999. Floral shift in the phytoplankton of Lake Baikal, Siberia: Recent dominance of Nitzschia acicularis. Plankton Biology and Ecology 46: 18–23.Google Scholar
  14. Bouchard, G., K. Gajewski & P. B. Hamilton, 2004. Freshwater diatom biogeography from the Canadian Arctic Archipelago. J. Biogeo. 31: 1955–1973.CrossRefGoogle Scholar
  15. Cameron, N. G., 1995. The representation of diatom communities in a small acid lake. Journal of Paleolimnology 14: 185–223.CrossRefGoogle Scholar
  16. Cetin, A., 2008. Epilithic, Epipelic and Epiphytic Diatoms in the Goksu Stream: Community relationships and habitat preferences. Journal of Freshwater Ecology 23: 143–149.CrossRefGoogle Scholar
  17. Cockburn, J. M. H. & S. F. Lamoureux, 2008a. Hydroclimate controls over seasonal sediment yield in two adjacent High Arctic watersheds. Hydrological Processes 22: 2013–2027.CrossRefGoogle Scholar
  18. Cockburn, J. M. H. & S. F. Lamoureux, 2008b. Inflow and lake controls on short-term mass accumulation and sedimentary particle size in a High Arctic lake: Implications for interpreting varved lacustrine sedimentary records. Journal of Paleolimnology 40: 923–942.CrossRefGoogle Scholar
  19. Cremer, H. & B. Wagner, 2004. Planktonic diatom communities in High Arctic lakes (Store Koldewey, Northeast Greenland). Canadian Journal of Botany 82: 1744–1757.CrossRefGoogle Scholar
  20. Douglas, M. S. V. & J. P. Smol, 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In Stoermer, E. & J. P. Smol (eds), The Diatoms: Applications for the Environment and Earth Sciences. Cambridge University Press, Cambridge, UK: 227–244.Google Scholar
  21. Duncan, S. W. & D. W. Blinn, 1989. Importance of physical variables on the seasonal dynamics of epilithic algae in a highly shaded canyon stream. Journal of Phycology 25: 455–461.CrossRefGoogle Scholar
  22. Environment Canada, 1994. Manual of Analytical Methods: Major ions and Nutrients, Volume 1. National Laboratory for Environmental Testing, Canadian Centre for Inland Waters, Burlington, Ontario, Canada.Google Scholar
  23. Fallu, M.-A., N. Allaire & R. Pienitz, 2000. Freshwater Diatoms from Northern Quebec and Labrador (Canada): Species–Environment Relationships in Lakes of Boreal Forest, Forest-Tundra, and Tundra Regions. Bibliotheca Diatomologica Band 45. J. Cramer, Germany.Google Scholar
  24. Fritz, S. C., 2008. Deciphering climatic history from lake sediments. Journal of Paleolimnology 39: 5–16.CrossRefGoogle Scholar
  25. Hausmann, S. & R. Pienitz, 2009. Seasonal water chemistry and diatom changes in six boreal lakes of the Laurentian Mountains (Québec, Canada): impacts of climate and timber harvesting. Hydrobiologia 635: 1–14.CrossRefGoogle Scholar
  26. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Amer. J. Bot. 69: 188–213.CrossRefGoogle Scholar
  27. Hodgson DA, Vincent JS, Fyles JG (1984) Quaternary geology of Central Melville Island, Northwest Territories. Geological Survery of Canada Paper 83-16: 23 pp.Google Scholar
  28. Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  29. Keatley, B. E., M. S. V. Douglas & J. P. Smol, 2007. Physical and chemical limnological characteristics of 46 lakes and ponds across environmental gradients on Melville Island, High Arctic Canada. Fundamental and Applied Limnology 168: 355–376.CrossRefGoogle Scholar
  30. Keatley, B. E., M. S. V. Douglas & J. P. Smol, 2008. Prolonged Ice Cover Dampens Diatom Community Responses to Recent Climatic Change in High Arctic Lakes. Arctic, Antarctic, and Alpine Research 40: 364–372.CrossRefGoogle Scholar
  31. Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnology and Oceanography 41: 1052–1062.CrossRefGoogle Scholar
  32. King, L., G. Clarke, H. Bennion, M. Kelly & M. Yallop, 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology 18: 15–25.CrossRefGoogle Scholar
  33. Kirilova, E. P., P. Bluszcz, O. Heiri, H. Cremer, C. Ohlendorf, A. F. Lotter & B. Zolitschka, 2008. Seasonal and interannual dynamics of diatom assemblages in Sacrower See (NE Germany): a sediment trap study. Hydrobiologia 614: 159–170.CrossRefGoogle Scholar
  34. Kirk, J. L., D. M. Muir, D. Antoniades, M. S. V. Douglas, M. S. Evans, T. A. Jackson, H. Kling, S. Lamoureux, D. S. S. Lim, R. Pienitz, J. P. Smol, K. Stewart, X. Wang & F. Yang, 2011. Climate Change and Mercury Accumulation in Canadian High and Subarctic Lakes. Environl. Sci. Technol. 45: 964–970.CrossRefGoogle Scholar
  35. Köster, D. & R. Pienitz, 2006. Seasonal diatom variability and paleolimnological inferences—a case study. Journal of Paleolimnology 35: 395–416. doi: 10.1007/s10933-005-1334-7.CrossRefGoogle Scholar
  36. Krammer, K. & H. Lange-Bertalot, 2004. Bacillariophyceae 2/3, 2/4. Elsevier, Germany.Google Scholar
  37. Krammer, K. & H. Lange-Bertalot, 2007. Bacillariophyceae 2/1, 2/2. Elsevier, Germany.Google Scholar
  38. Krebs, C. J., 1999. Ecological methodology. Addison Wesley Longman, Menlo Park, CA, USA.Google Scholar
  39. Lim, D. S. S., C. Kwan & M. S. V. Douglas, 2001. Periphytic diatom assemblages from Bathurst Island, Nunavut, Canadian High Arctic: An examination of community relationships and habitat preferences. Journal of Phycology 37: 379–392.CrossRefGoogle Scholar
  40. Lim, D. S. S., M. S. V. Douglas & J. P. Smol, 2007. Diatom assemblages and their relationships to lakewater nitrogen levels and other limnological variables from 36 lakes and ponds on Banks Island, N.W.T., Canadian Arctic. Hydrobiologia 586: 191–211.CrossRefGoogle Scholar
  41. Lotter, A. F. & C. Bigler, 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sciences 62: 125–141.CrossRefGoogle Scholar
  42. Ludlam, S. D., S. Feeney & M. S. V. Douglas, 1996. Changes in the importance of lotic and littoral diatoms over the last 191 years. Journal of Paleolimnology 16: 187–204.Google Scholar
  43. Mann, D. G. & J. M. Droop, 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19–32.CrossRefGoogle Scholar
  44. McNeely, R. N., V. P. Neimanis & L. Dwyer, 1979. Water Quality Sourcebook: A Guide to Water Quality Parameters. Environment Canada, Inland Waters Directorate, Water Quality Branch. Ministry of Supply and Services, Ottawa, Ontario, Canada.Google Scholar
  45. Meteorological Service of Canada, 2002. Canadian Climate Normals 1971-2000. Environment Canada, Ottawa, Canada [available on internet at http://climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html].
  46. Michelutti, N., A. J. Holtham, M. S. V. Douglas & J. P. Smol, 2003. Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. Journal of Phycology 39: 465–480.CrossRefGoogle Scholar
  47. Michelutti, N., M. S. V. Douglas & J. P. Smol, 2007. Evaluating diatom community composition in the absence of marked limnological gradients in the High Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biology 30: 1459–1473.CrossRefGoogle Scholar
  48. Rautio, M., S. Sorvari & A. Korhola, 2000. Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. Journal of Limnology 59(suppl. 1): 81–96.Google Scholar
  49. Rühland, K. & J. P. Smol, 2005. Diatom shifts as evidence for recent subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226: 1–16.CrossRefGoogle Scholar
  50. Rühland, K., A. Priesnitz & J. P. Smol, 2003. Evidence for recent environmental changes in 50 lakes across the Canadian Arctic treeline. Arctic, Antarctic, and Alpine Research 35: 110–123.CrossRefGoogle Scholar
  51. Ryves, D. B., D. H. Jewson, M. Sturm, R. W. Battarbee, R. J. Flower, A. W. Mackay & N. G. Granin, 2003. Quantitative and qualitative relationships between planktonic diatom communities and diatom assemblages in sedimenting material and surface sediments in Lake Baikal, Siberia. Limnology and Oceanography 48: 1643–1661.CrossRefGoogle Scholar
  52. Ryves, D. B., R. W. Battarbee & S. C. Fritz, 2009. The dilemma of disappearing diatoms: Incorporating diatom dissolution data into palaeoenvironmental modelling and reconstruction. Quaternary Science Reviews 28: 120–136.CrossRefGoogle Scholar
  53. Sanchez-Castillo, P. M., J. E. Linares-Cuesta & D. Fernandez-Moreno, 2008. Changes in epilithic diatom assemblages in a Mediterranean high mountain lake (Laguna de La Caldera, Sierra Nevada, Spain) after a period of drought. Journal of Limnology 67: 49–55.CrossRefGoogle Scholar
  54. Sayer, C. D., T. A. Davidson, J. I. Jones & P. G. Langdon, 2010. Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshwater Biology 55: 487–499.CrossRefGoogle Scholar
  55. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verhandlungen des Internationalen Verein Limnologie 23: 837–844.Google Scholar
  56. Smol, J. P. & E. F. Stoermer, 2010. The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, New York.Google Scholar
  57. Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Rühland, S. Sorvari, D. Antoniades, S. J. Brooks, M.-A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, É. Saulnier-Talbot, S. Siitonen, N. Solovieva & J. Weckström, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102: 4397–4402.PubMedCrossRefGoogle Scholar
  58. Soininen, J. & P. Eloranta, 2004. Seasonal persistence and stability of diatom communities in rivers: are there habitat specific differences? European Journal of Phycology 39: 153–160.CrossRefGoogle Scholar
  59. Soininen, J. & J. Weckström, 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental and Applied Limnology 174: 205–213.CrossRefGoogle Scholar
  60. Sorvari, S. & A. Korhola, 1998. Recent diatom assemblage changes in subarctic Lake Saanajärvi, NW Finnish Lapland, and their paleoenvironmental implications. Journal of Paleolimnology 20: 205–215.CrossRefGoogle Scholar
  61. Sorvari, S., A. Korhola & R. Thompson, 2002. Lake Diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8: 171–181.CrossRefGoogle Scholar
  62. Stewart, K. A. & S. F. Lamoureux, 2011. Connections between river runoff and limnological conditions in adjacent high Arctic lakes: Cape Bounty, Melville Island, Nunavut. Arctic 64: 169–182.Google Scholar
  63. Stewart, K. A., S. F. Lamoureux & A. C. Forbes, 2005. Hydrological controls on the diatom assemblage of a seasonal arctic river: Boothia Peninsula, Nunavut, Canada. Hydrobiologia 544: 259–270.CrossRefGoogle Scholar
  64. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  65. Van Kerckvoorde, A., K. Trappeniers, I. Nijs & L. Beyens, 2000. The epiphytic diatom assemblages from terrestrial mosses in Zackenberg (Northeast Greenland). Systematics and Geography of Plants 70: 301–314.CrossRefGoogle Scholar
  66. Wilson, S. B., B. F. Cumming & J. P. Smol, 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219 lake dataset from western North America. Canadian Journal of Fisheries and Aquatic Sciences 53: 1580–1594.Google Scholar
  67. Woodbridge, J. & N. Roberts, 2010. Linking neo- and palaeolimnology: a case study using Crater Lake diatoms from central Turkey. Journal of Paleolimnology 44: 855–871.CrossRefGoogle Scholar
  68. Zielinskia, U. & R. Gersonde, 1997. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 129: 213–250.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Geography, Macintosh-Corry Hall, D201Queen’s UniversityKingstonCanada
  2. 2.Department of Geography, Macintosh-Corry Hall, D126Queen’s UniversityKingstonCanada

Personalised recommendations