Skip to main content
Log in

Some evidence for different ecological pressures that constrain male and female body size

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The dwarf morph of the Lake Tanganyika cichlid Telmatochromis temporalis uses empty snail shells as shelters and breeding sites in shell beds, in which many empty shells exist. Here, we assessed selection forces regulating body size in this fish. Field observations showed that large males tended to have a greater number of females in their territories, suggesting that sexual selection favours large males. Nonetheless, a transplant experiment suggested that male body size was limited by the ability to hide in empty shells from large piscivorous fish. In females, the number of ovarian eggs increased with body size, suggesting that fecundity selection favours large females. However, females are smaller than males. Females spawned eggs close to the apices inside the shells. The small space there would decrease the risk of egg predation by egg predators, and small body size of females may be a result of adaptation to spawn eggs in the small, safe spaces. This study provides support for the idea that male and female body sizes have been limited by different ecological pressures (predation on adult fish in males, predation on eggs in females), which has not been reported previously in any animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blanckenhorn, W. U., 2000. The evolution of body size: what keeps organisms small? Quarterly Review of Biology 75: 385–407.

    Article  PubMed  CAS  Google Scholar 

  • Blanckenhorn, W. U., 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111: 977–1016.

    Article  Google Scholar 

  • Bolnick, D. I. & M. Doebeli, 2003. Sexual dimorphism and adaptive speciation: two sides of the same ecological coin. Evolution 57: 2433–2449.

    PubMed  Google Scholar 

  • Cumberlidge, N., R. Von Sternberg, I. R. Bills & H. Martin, 1999. A revision of the genus Platythelphusa A. Milne-Edwards, 1887 from Lake Tanganyika, East Africa (Decapoda: Potamoidea: Platythelphusidae). Journal of Natural History 33: 1487–1512.

    Article  Google Scholar 

  • Demment, M. W. & P. J. Van Soest, 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. The American Naturalist 125: 641–672.

    Article  Google Scholar 

  • Elgar, M. A., 1990. Evolutionary compromise between a few large and many small eggs: comparative evidence in teleost fish. Oikos 59: 283–287.

    Article  Google Scholar 

  • Erlinge, S., 1987. Why do European stoats Mustela erminae not follow Bergmann’s rule? Holarctic Ecology 10: 33–39.

    Google Scholar 

  • Forsgren, E., C. Kvarnemo & K. Lindström, 1996. Mode of sexual selection determined by resource abundance in two sand goby populations. Evolution 50: 646–654.

    Article  Google Scholar 

  • Gliwicz, J., 1988. Sexual dimorphism in small mustelids: body diameter limitation. Oikos 53: 411–414.

    Article  Google Scholar 

  • Head, G., 1995. Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (class Araneae). Evolution 49: 776–781.

    Article  Google Scholar 

  • Hedrick, A. V. & E. J. Temeles, 1989. The evolution of sexual dimorphism in animals: hypotheses and tests. Trends in Ecology and Evolution 4: 136–138.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, A. P., M. L. Kelly, M. T. Kinnison & D. N. Reznick, 2006. Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology 19: 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Heske, E. J. & R. S. Ostfeld, 1990. Sexual dimorphism in size, relative size of testes, and mating systems in North American voles. Journal of Mammalogy 71: 510–519.

    Article  Google Scholar 

  • Hori, M., 1997. Structure of littoral fish communities organized by their feeding activities. In Kawanabe, H., M. Hori & M. Nagoshi (eds), Fish Communities in Lake Tanganyika. Kyoto University Press, Kyoto: 275–298.

    Google Scholar 

  • Hori, M., M. M. Gashagaza, M. Nshombo & H. Kawanabe, 1993. Littoral fish communities in Lake Tanganyika: irreplaceable diversity supported by intricate interactions among species. Conservation Biology 7: 657–666.

    Article  Google Scholar 

  • Hughes, A. L. & M. K. Hughes, 1986. Paternal investment and sexual size dimorphism in North American Passerines. Oikos 46: 171–175.

    Article  Google Scholar 

  • Jonsson, B., N. Jonsson, E. Brodtkorb & P.-J. Ingebrigtsen, 2001. Life-history traits of brown trout vary with the size of small streams. Functional Ecology 15: 310–317.

    Article  Google Scholar 

  • Katoh, R., H. Munehara & M. Kohda, 2005. Alternative male mating tactics of the substrate brooding cichlid Telmatochromis temporalis in Lake Tanganyika. Zoological Science 22: 555–561.

    Article  PubMed  Google Scholar 

  • Nakai, K., Y. Yanagisawa, T. Sato, Y. Niimura & M. M. Gashagaza, 1990. Lunar synchronization of spawning in cichlid fishes of the tribe Lamprologini in Lake Tanganyika. Journal of Fish Biology 37: 589–598.

    Article  Google Scholar 

  • Ott, J. R. & M. Lampo, 1991. Body size selection in Acanthoscelides alboscutellatus (Coleoptera: Bruchidae). Oecologia 87: 522–527.

    Article  Google Scholar 

  • Pearson, D., R. Shine & R. How, 2002. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biological Journal of the Linnaean Society 77: 113–125.

    Article  Google Scholar 

  • Peters, R. H. & K. Wassenberg, 1983. The effect of body size on animal abundance. Oecologia 60: 89–96.

    Article  Google Scholar 

  • Plaistow, S. J., C. T. Lapsley, A. P. Beckerman & T. G. Benton, 2004. Age and size at maturity: sex, environmental variability and developmental thresholds. Proceedings of the Royal Society of London B 271: 919–924.

    Article  Google Scholar 

  • Poll, M., 1956. Poissons Cichlidae. Résultats scientifiques. Exploration hydrobiologique du Lac Tanganika (1946–1947). Institut Royal des Sciences Naturelles de Belgique 3(5B): 1–619.

    Google Scholar 

  • Prenter, J., R. W. Elwood & W. I. Montgomery, 1999. Sexual size dimorphism and reproductive investment by female spiders: a comparative analysis. Evolution 53: 1987–1994.

    Article  Google Scholar 

  • Reznick, D. N. & C. K. Ghalambor, 2005. Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata). Canadian Journal of Fisheries and Aquatic Sciences 62: 791–801.

    Article  Google Scholar 

  • Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Article  Google Scholar 

  • Rossiter, A., 1991. Lunar spawning synchroneity in a freshwater fish. Naturwissenschaften 78: 182–184.

    Article  Google Scholar 

  • Safina, C., 1984. Selection for reduced male size in raptorial birds: the possible roles of female choice and mate guarding. Oikos 43: 159–164.

    Article  Google Scholar 

  • Sato, T., 1994. Active accumulation of spawning substrate: a determinant of extreme polygyny in a shell-brooding cichlid fish. Animal Behaviour 48: 669–678.

    Article  Google Scholar 

  • Sato, T. & M. M. Gashagaza, 1997. Shell-broong cichlid fishes of Lake Tanganyika: their habitats and mating systems. In Kawanabe, H., M. Hori & M. Nagoshi (eds), Fish Communities in Lake Tanganyika. Kyoto University Press, Kyoto: 219–240.

    Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D., T. D. Price & L. Rowe, 1991. Conflicting selection pressures and life history trade-offs. Proceedings of the Royal Society of London B 246: 11–17.

    Article  Google Scholar 

  • Schütz, D. & M. Taborsky, 2000. Giant males or dwarf females: what determines the extreme sexual size dimorphism in Lamprologus callipterus? Journal of Fish Biology 57: 1254–1265.

    Google Scholar 

  • Schütz, D. & M. Taborsky, 2005. The influence of sexual selection and ecological constraints on an extreme sexual size dimorphism in a cichlid. Animal Behaviour 70: 539–549.

    Article  Google Scholar 

  • Schütz, D., G. A. Parker, M. Taborsky & T. Sato, 2006. An optimality approach to male and female body sizes in an extremely size-dimorphic cichlid fish. Evolutionary Ecology Research 8: 1–16.

    Google Scholar 

  • Shetty, S. & R. Shine, 2002. Sexual divergence in diets and morphology in Fijian sea snakes Laticauda colubrina (Laticaudinae). Austral Ecology 27: 77–84.

    Article  Google Scholar 

  • Simms, D. A., 1979. North American weasels: resource utilization and distribution. Canadian Journal of Zoology 57: 504–520.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd ed. Freeman, New York.

    Google Scholar 

  • Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Stearns, S. C., M. Ackermann, M. Doebeli & M. Kaiser, 2000. Experimental evolution of aging, growth, and reproduction in fruitflies. Proceedings of the National Academy of Sciences of the United States of America 97: 3309–3313.

    Article  PubMed  CAS  Google Scholar 

  • Székely, T., J. D. Reynolds & J. Figuerola, 2000. Sexual size dimorphism in shorebirds, gulls, and alcids: the influence of sexual and natural selection. Evolution 54: 1404–1413.

    PubMed  Google Scholar 

  • Takahashi, T., 2003. Systematics of Tanganyikan cichlid fishes (Teleostei: Perciformes). Ichthyological Research 50: 367–382.

    Article  Google Scholar 

  • Takahashi, T., 2004. Morphological and genetic distinctness of rock and shell-bed dwelling Telmatochromis (Teleostei, Cichlidae) in the south of Lake Tanganyika suggest the existence of two species. Journal of Fish Biology 65: 419–435.

    Article  Google Scholar 

  • Takahashi, T., 2010. Different degrees of lunar synchronization of ovary development between two morphs of a Tanganyika cichlid fish. Hydrobiologia 644: 139–143.

    Article  Google Scholar 

  • Takahashi, T., K. Watanabe, H. Munehara, L. Rüber & M. Hori, 2009. Evidence for divergent natural selection of a Lake Tanganyika cichlid inferred from repeated radiations in body size. Molecular Ecology 18: 3110–3119.

    Article  PubMed  CAS  Google Scholar 

  • Temeles, E. J., I. L. Pan, J. L. Brennan & J. N. Horwitt, 2000. Evidence for ecological causation of sexual dimorphism in a hummingbird. Science 298: 441–443.

    Article  Google Scholar 

  • Tobler, M., I. Schlupp & M. Plath, 2008. Does divergence in female mate choice affect male size distributions in two cave fish populations? Biology Letters 4: 452–454.

    Article  PubMed  Google Scholar 

  • Tracy, C. R., 1999. Differences in body size among chuckwalla (Sauromalus obesus) populations. Ecology 80: 259–271.

    Google Scholar 

  • Uhl, G., S. Schmitt, M. A. Schaefer & W. Blanckenhorn, 2004. Food and sex-specific growth strategies in a spider. Evolutionary Ecology Research 6: 523–540.

    Google Scholar 

  • Walsh, M. R. & D. N. Reznick, 2008. Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proceedings of the National Academy of Sciences of the United States of America 105: 594–599.

    Article  PubMed  CAS  Google Scholar 

  • Wapstra, E., R. Swain & J. M. O’Reilly, 2001. Geographic variation in age and size at maturity in a small Australian viviparous skink. Copeia 2001: 646–655.

    Article  Google Scholar 

  • Webster, M. S., 1992. Sexual dimorphism, mating system and body size in new world blackbirds (Icterinae). Evolution 46: 1621–1641.

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Phiri, D. Sinynza, and the other staff of the Lake Tanganyika Research Unit in Mpulungu for support in the field; T. Komai for identifying crab species; E. Nakajima and D. Sinynza for providing language help; T. Sota, Y. Takami and H. Toju for advice on research. This study was supported by Grants-in-Aid for JSPS Fellows (No. 20188), for Special Purposes (No. 18779002), for Young Scientists (No. 20770065), and Scientific Research (No. 23370043) to TT, Grant-in-Aid for Scientific Research (No. 22405010) to MK, and Global COE Program (A06) to Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsumi Takahashi.

Additional information

Handling editor: Christian Sturmbauer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T., Ota, K., Kohda, M. et al. Some evidence for different ecological pressures that constrain male and female body size. Hydrobiologia 684, 35–44 (2012). https://doi.org/10.1007/s10750-011-0961-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0961-4

Keywords

Navigation