Skip to main content

Developing biomonitoring protocols for shallow Arctic lakes using diatoms and artificial substrate samplers

Abstract

Growing concerns over effects of climate warming and other stressors on shallow Arctic lakes and ponds stimulate the need to develop and implement effective protocols to track changes in ecological integrity. This study assesses seasonal and spatial variability of periphytic diatom communities in a shallow Arctic lake in northern Yukon Territory to establish biomonitoring protocols. Artificial substrate samplers, which mimic macrophytes, allow direct measurement of biotic responses to shifting environmental conditions and control for possible confounding factors (e.g., accrual time and microhabitat type). Artificial substrate samplers were deployed at three locations and retrieved at three times (early, mid, and late) during the ice-free season. Analyses identified that diatom abundance increased exponentially and community composition changed significantly over the ice-free season, despite little variability in water chemistry, but did not differ among the three sampling locations within the lake. Patterns of seasonal succession in diatom community composition were characterized by first arrival of well-dispersed taxa, which included several planktonic taxa, followed by a transitional phase composed of planktonic and periphytic taxa, and culminated with dominance by periphytic species, mainly Achnanthes minutissima (Kützing). Results highlight the role of seasonal succession on artificial substrate colonization and the need to deploy artificial substrate samplers for the duration of the ice-free season to capture peak periphytic algal abundance. Low spatial variability of shallow Arctic lakes allows for samplers to be deployed at one single location to characterize diatom community composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ács, É. & K. T. Kiss, 1993. Colonization processes of diatoms on artificial substrates in the River Danube near Budapest (Hungary). Hydrobiologia 269(270): 307–315.

    Article  Google Scholar 

  2. Arctic Climate Impact Assessment (ACIA), 2004. Impacts of a warming Arctic. Cambridge University Press, New York: 139 pp.

  3. Bailey, R. C., R. H. Norris & T. B. Reynoldson, 2004. Bioassessment of Freshwater Ecosystems Using the Reference Condition Approach. Springer, New York: 170 pp.

    Book  Google Scholar 

  4. Balasubramaniam, A. M., 2009. Community-based research, youth outdoor education and other highlights of a northern research internship experience in Old Crow, Yukon Territory. Meridian Spring/Summer: 14–18.

  5. Balasubramaniam, A. M., R. I. Hall, B. B. Wolfe & J. N. Sweetman, 2011. Assessing the effects of snowmelt and rainfall on limnological conditions of thermokarst lakes in the Old Crow Flats, Yukon Territory. Society of Canadian Limnologists 2011 Abstracts.

  6. Barbiero, R. P., 2000. A multi-lake comparison of epilithic diatom communities on natural and artificial substrates. Hydrobiologia 438: 158–170.

    Article  Google Scholar 

  7. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27: 184–189.

    Article  Google Scholar 

  8. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron & H. Bennion, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal and Siliceous Indicators, Vol. 3. Kluwer, Dordrecht: 155–202.

    Chapter  Google Scholar 

  9. Bennion, H., C. D. Sayer, J. Tibby & H. J. Carrick, 2010. Diatoms as indicators of environmental change in shallow lakes. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 152–173.

    Google Scholar 

  10. Biggs, B. J. F., 1988. Artificial substrate exposure times for periphyton biomass estimates in rivers. New Zealand Journal of Marine and Freshwater Research 22: 507–515.

    Article  CAS  Google Scholar 

  11. Birks, H. J. B., 2010. Numerical methods for the analysis of diatom assemblage data. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Earth and Environmental Sciences. Cambridge University Press, Cambridge: 23–54.

    Google Scholar 

  12. Blindow, I., 1987. The composition and density of epiphyton on several species of submerged macrophytes—the neutral substrate hypothesis tested. Aquatic Botany 29: 157–168.

    Article  Google Scholar 

  13. Brazner, J. C., N. P. Danz, G. J. Niemi, R. R. Regal, A. S. Trebitz, R. W. Howe, J. M. Hanowski, L. B. Johnson, J. J. H. Ciborowski, C. A. Johnston, E. D. Reavie, V. J. Brady & G. V. Sgro, 2007. Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: a multi-assemblage approach. Ecological Indicators 7: 610–635.

    Article  Google Scholar 

  14. Brown, S. D. & A. P. Austin, 1973. Spatial and temporal variation in periphyton and physico-chemical conditions in the littoral of a lake. Archiv für Hydrobiologie 71: 183–232.

    Google Scholar 

  15. Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.

    Article  CAS  Google Scholar 

  16. Cattaneo, A. & M. C. Amireault, 1992. How artificial are artificial substrata for periphyton? Journal of the North American Benthological Society 11: 244–256.

    Article  Google Scholar 

  17. Cattaneo, A. & J. Kalff, 1978. Seasonal changes in the epiphyte community of natural and artificial macrophytes in Lake Memphremagog (Que. and VT.). Hydrobiologia 60: 135–144.

    Article  Google Scholar 

  18. Christoffersen, K. S., E. Jeppesen, D. L. Moorhead & L. J. Tranvik, 2008. Food-web relationships and community structures in high-latitude lakes. In Vincent, W. F. & J. Laybourn-Parry (eds), Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford University Press, Oxford: 269–289.

    Google Scholar 

  19. Clarke, K. R. & R. N. Gorley, 2006. Primer v6: Use Manual/Tutorial. PRIMER-E Ltd, Plymouth.

    Google Scholar 

  20. Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. Plymouth Marine Laboratory, Plymouth.

    Google Scholar 

  21. Dixit, S. S., J. P. Smol & J. C. Kingston, 1992. Diatoms: powerful indicators of environmental change. Environmental Science and Technology 26: 23–33.

    Article  Google Scholar 

  22. Douglas, M. S. V. & J. P. Smol, 1993. Freshwater diatoms from high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Nova Hedwigia 57: 511–552.

    Google Scholar 

  23. Douglas, M. S. V. & J. P. Smol, 1994. Limnology of high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Archiv für Hydrobiologie 131: 401–434.

    Google Scholar 

  24. Douglas, M. S. V. & J. P. Smol, 1995. Periphytic diatom assemblages from high arctic ponds. Journal of Phycology 31: 60–69.

    Article  Google Scholar 

  25. Environment Canada, 1994. Manual of Analytical Methods: Major Ions and Nutrients, Volume 1. National Laboratory for Environmental Testing. Canadian Centre for Inland Waters, Burlington, ON.

  26. Environment Canada, 2010. National Climate Data and Information Archive (Accessible at: http://www.climate.weatheroffice.ec.ge.ca/climateData/hourlydata_e.html).

  27. Glew, J. R., 1991. A miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology 5: 285–287.

    Article  Google Scholar 

  28. Growns, I., 1999. Is genus or species identification of periphytic diatoms required to determine the impact of river regulation. Journal of Applied Phycology 11: 273–283.

    Article  Google Scholar 

  29. Hansson, L. A., 1992. The role of food-chain composition and nutrient availability in shaping algal biomass development. Ecology 73: 241–247.

    Article  Google Scholar 

  30. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    PubMed  Article  Google Scholar 

  31. Hughes, O. L., 1972. Surficial geology of northern Yukon Territory and northwestern district of Mackenzie, Northwest Territories. Geological Survey of Canada paper: 69-36.

  32. Kattsov, V. M., E. Källén, H. Cattle, J. Christensen, H. Drange, I. Hanssen-Bauer, T. Jóhannesen, I. Karol, J. Räisänen, G. Svensson & S. Vavulin, 2005. Future Climate Change: Modeling and Scenarios for the Arctic. Arctic Climate Impact Assessment. Cambridge University Press, Cambridge: 100–146.

    Google Scholar 

  33. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E. A. Lindstrøm, M. Leitao, P. Marvan, J. Padis’ak, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224.

    Article  Google Scholar 

  34. Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge: 528.

    Google Scholar 

  35. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. Süsswasserflora von Mitteleuropa. Band 2 (1–4), vols. 1–4. Gustav Fisher Verlag, Stuttgart.

  36. Labrecque, S., D. Lacelle, C. Duguay, B. Lauriol & J. Hawkings, 2009. Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, northern Yukon, Canada: remote sensing, numerical modeling and stable isotope analysis. Arctic 62: 225–238.

    Google Scholar 

  37. Lauriol, B., C. R. Duguay & A. Riel, 2002. Response of the Porcupine and Old Crow rivers in northern Yukon, Canada, to Holocene climatic change. The Holocene 12: 27–34.

    Article  Google Scholar 

  38. Lavoie, I., S. Campeau, F. Darchambeau, G. Cabana & P. J. Dillon, 2008. Are diatoms good integrators of temporal variability in stream water quality? Freshwater Biology 53: 827–841.

    Article  CAS  Google Scholar 

  39. Lawler, J. J., S. L. Shafer, D. White, P. Kareiva, E. P. Maurer, A. R. Blaustein & P. J. Bartlein, 2009. Projected climate-induced faunal change in the western hemisphere. Ecology 90: 588–597.

    PubMed  Article  Google Scholar 

  40. MacDonald, L. A., K. W. Turner, A. M. Balasubramaniam, B. B. Wolfe, R. I. Hall & J. N. Sweetman, 2011. Tracking hydrological responses of a thermokarst lake in the Old Crow Flats (Yukon Territory, Canada) to recent climate variability using aerial photographs and paleolimnological methods. Hydrological Processes. doi:10.1002/hyp.8116.

  41. Mesquita, P. S., F. J. Wrona & T. D. Prowse, 2010. Effects of retrogressive permafrost thaw slumping on sediment chemistry and submerged macrophytes in Arctic tundra lakes. Freshwater Biology 55: 2347–2358.

    CAS  Google Scholar 

  42. Michelutti, N., A. J. Holtham, M. S. V. Douglas & J. P. Smol, 2003. Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. Journal of Phycology 39: 465–480.

    Article  Google Scholar 

  43. Michelutti, N., M. S. V. Douglas & J. P. Smol, 2007. Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biology 30: 1459–1473.

    Article  Google Scholar 

  44. Morell, G. & J. R. Dietrich, 1993. Evaluation of the hydrocarbon prospectivity of the Old Crow Flats area of northern Yukon. Bulletin of Canadian Petroleum Geology 41: 32–45.

    Google Scholar 

  45. Moser, K. A., G. M. MacDonald & J. P. Smol, 1996. Applications of freshwater diatoms to geographical research. Progress in Physical Geography 20: 21–52.

    Article  Google Scholar 

  46. Newall, P., N. Bate & L. Metzeling, 2006. A comparison of diatom and macroinvertebrate classification of sites in the Kiewa River system, Australia. Hydrobiologia 572: 131–149.

    Article  Google Scholar 

  47. Nicotri, M. E., 1977. Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58: 1020–1032.

    Article  Google Scholar 

  48. Pip, E. & G. G. C. Robinson, 1984. A comparison of periphyton composition on eleven species of submerged macrophytes. Hydrobiological Bulletin 18: 109–118.

    Article  Google Scholar 

  49. Plug, L. J., C. Walls & B. M. Scott, 2008. Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophysical Research Letters 35: LO3502.

    Article  Google Scholar 

  50. Prowse, T. D. & K. Brown, 2010. Hydro-ecological effects of changing Arctic river and lake ice covers: a review. Hydrology Research 41: 454–461.

    Article  Google Scholar 

  51. Prowse, T. D., F. J. Wrona, J. D. Reist, J. J. Gibson, J. E. Hobbie, L. M. J. Lévesque & W. F. Vincent, 2006. Climate change effects on hydroecology of Arctic freshwater ecosystems. Ambio 35: 347–358.

    PubMed  Article  CAS  Google Scholar 

  52. Reavie, E. D., R. P. Axler, G. V. Sgro, N. P. Danz, J. C. Kingston, A. R. Kireta, T. N. Brown, T. P. Hollenhorst & M. J. Ferguson, 2006. Diatom-based weighted-averaging transfer functions for Great Lakes coastal water quality: relationships to watershed characteristics. Journal of Great Lakes Research 32: 321–347.

    Article  CAS  Google Scholar 

  53. Resh, V. H., 2008. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environmental and Monitoring Assessment 138: 131–138.

    Article  Google Scholar 

  54. Riordan, B., D. Verbyla & A. D. McGuire, 2006. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. Journal of Geophysical Research 111: G04002.

    Article  Google Scholar 

  55. Round, F. E., 1991. Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145.

    Article  Google Scholar 

  56. Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. Mcdonald, B. J. Nicholson, N. T. Roulet & J. P. Smol, 1997. Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes 11: 873–902.

    Article  Google Scholar 

  57. Rowland, J. C., C. E. Jones, G. Altmann, R. Bryan, B. T. Crosby, G. L. Geernaert, L. D. Hinzman, D. L. Kane, D. M. Lawrence, A. Mancino, P. Marsh, J. P. McNamara, V. E. Romanovsky, H. Toniolo, B. J. Travis, E. Trochim & C. J. Wilson, 2010. Arctic landscapes in transition: responses to thawing permafrost. EOS, Transactions, American Geophysical Union 91: 229–230.

    Article  Google Scholar 

  58. Rühland, K. & J. P. Smol, 2005. Diatom shifts as evidence for recent subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226: 1–16.

    Article  Google Scholar 

  59. Schindler, D. W. & J. P. Smol, 2006. Cumulative effects of climate warming and other human activities on freshwaters of Arctic and subarctic North America. Ambio 35: 160–168.

    PubMed  Article  Google Scholar 

  60. Siver, P. A., 1977. Comparison of attached diatom communities on natural and artificial substrates. Journal of Phycology 13: 402–406.

    Google Scholar 

  61. Smith, L. C., Y. Sheng, G. M. MacDonald & L. D. Hinzman, 2005. Disappearing Arctic lakes. Science 308: 1429.

    PubMed  Article  CAS  Google Scholar 

  62. Smol, J. P. & M. S. V. Douglas, 2007. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences 104: 12395–12397.

    Article  CAS  Google Scholar 

  63. Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Rühland, S. Sorvari, D. Antoniades, S. J. Brooks, M. A. Fallu, M. Hughes, B. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, É. Saulnier-Talbot, S. Siitonen, N. Solovieva & J. Weckström, 2005. Climate-driven regime shifts in the biological communities of Arctic lakes. Proceedings of the National Academy of Sciences 102: 4397–4402.

    Article  CAS  Google Scholar 

  64. Stewart, K. A. & S. F. Lamoureux, 2011. Connections between river runoff and limnological conditions in adjacent high Arctic lakes: Cape Bounty, Melville Island, Nunavut. Arctic 64: 169–182.

    Google Scholar 

  65. Summer, W. T. & C. D. McIntire, 1982. Grazer–periphyton interactions in laboratory streams. Archiv für Hydrobiologie 93: 135–157.

    Google Scholar 

  66. ter Braak, C. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advancements in Ecological Research 18: 271–317.

    Article  Google Scholar 

  67. ter Braak, C. J. F. & P. Šmilauer, 2002. Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.

    Google Scholar 

  68. Turner, K. W., B. B. Wolfe & T. W. D. Edwards, 2010. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers. Journal of Hydrology 386: 103–117.

    Article  CAS  Google Scholar 

  69. U.S. EPA. 2002. Methods for Evaluating Wetland Condition: Using Algae to Assess Environmental Conditions in wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-021.

  70. Veres, A. J., R. Pienitz & J. P. Smol, 1995. Lake water salinity and periphytic diatom succession in three subarctic lakes, Yukon Territory, Canada. Arctic 48: 63–70.

    Google Scholar 

  71. Wiklund, J. A., N. Bozinovski, R. I. Hall & B. B. Wolfe, 2010. Epiphytic diatoms as flood indicators. Journal of Paleolimnology 44: 25–42.

    Article  Google Scholar 

  72. Wolfe, B. B., M. M. Humphries, M. F. J. Pisaric, A. M. Balasubramaniam, C. R. Burn, L. Chan, D. Cooley, D. G. Froese, S. Graupe, R. I. Hall, T. Lantz, T. J. Porter, P. Roy-Leveillee, K. W. Turner, S. D. Wesche & M. Williams, 2011. Environmental change and traditional use of the Old Crow Flats in northern Canada: an IPY opportunity to meet the challenges of the new northern research paradigm. Arctic 64: 127–135.

    Google Scholar 

  73. Zazula, G. D., A. Duk-Rodkin, C. E. Schweger & R. E. Morlan, 2004. Late Pleistocene chronology of glacial Lake Old Crow and the north-west margin of the Laurentide Ice Sheet. In Ehlers, J. & P. L. Gibbard (eds), Quaternary Glaciations—Extent and Chronology, Elsevier, New York: 347–362.

Download references

Acknowledgements

Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) via a Northern Research Internship to A. M. Balasubramaniam, a Strategic Partnership Projects Grant and Northern Research Chair, and Discovery Grant/Northern Supplement Programs, the Yukon Fish and Wildlife Enhancement Fund, the Indian and Northern Affairs Northern Scientific Training Program, Polar Continental Shelf Program and Government of Canada International Polar Year. Field work was conducted in collaboration with the Vuntut Gwitchin Government’s Natural Resource Department (assisted by Robert Kyikavichik, Ryan Kyikavichik, Michael Frost, Freddie Frost, Devon Kyikavichik) and Parks Canada Agency (assisted by Leila Sumi). We thank Shel Graupe, Megan Williams, and Dorothy Cooley for their logistical help in coordinating this research. We extend a special thanks to the Netro family for allowing us to conduct this research in their traditional camp area. We also acknowledge Ian McDonald (Parks Canada) for discussions on incorporating artificial substrate samplers for hydroecological monitoring in Vuntut National Park.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lauren A. MacDonald.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MacDonald, L.A., Balasubramaniam, A.M., Hall, R.I. et al. Developing biomonitoring protocols for shallow Arctic lakes using diatoms and artificial substrate samplers. Hydrobiologia 683, 231–248 (2012). https://doi.org/10.1007/s10750-011-0960-5

Download citation

Keywords

  • Biomonitoring
  • Artificial substrates
  • Periphytic diatoms
  • Arctic lakes
  • Limnology
  • Old Crow Flats