, Volume 683, Issue 1, pp 231–248 | Cite as

Developing biomonitoring protocols for shallow Arctic lakes using diatoms and artificial substrate samplers

  • Lauren A. MacDonald
  • Ann M. Balasubramaniam
  • Roland I. Hall
  • Brent B. Wolfe
  • Jon N. Sweetman
Primary Research Paper


Growing concerns over effects of climate warming and other stressors on shallow Arctic lakes and ponds stimulate the need to develop and implement effective protocols to track changes in ecological integrity. This study assesses seasonal and spatial variability of periphytic diatom communities in a shallow Arctic lake in northern Yukon Territory to establish biomonitoring protocols. Artificial substrate samplers, which mimic macrophytes, allow direct measurement of biotic responses to shifting environmental conditions and control for possible confounding factors (e.g., accrual time and microhabitat type). Artificial substrate samplers were deployed at three locations and retrieved at three times (early, mid, and late) during the ice-free season. Analyses identified that diatom abundance increased exponentially and community composition changed significantly over the ice-free season, despite little variability in water chemistry, but did not differ among the three sampling locations within the lake. Patterns of seasonal succession in diatom community composition were characterized by first arrival of well-dispersed taxa, which included several planktonic taxa, followed by a transitional phase composed of planktonic and periphytic taxa, and culminated with dominance by periphytic species, mainly Achnanthes minutissima (Kützing). Results highlight the role of seasonal succession on artificial substrate colonization and the need to deploy artificial substrate samplers for the duration of the ice-free season to capture peak periphytic algal abundance. Low spatial variability of shallow Arctic lakes allows for samplers to be deployed at one single location to characterize diatom community composition.


Biomonitoring Artificial substrates Periphytic diatoms Arctic lakes Limnology Old Crow Flats 



Funding for this study was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) via a Northern Research Internship to A. M. Balasubramaniam, a Strategic Partnership Projects Grant and Northern Research Chair, and Discovery Grant/Northern Supplement Programs, the Yukon Fish and Wildlife Enhancement Fund, the Indian and Northern Affairs Northern Scientific Training Program, Polar Continental Shelf Program and Government of Canada International Polar Year. Field work was conducted in collaboration with the Vuntut Gwitchin Government’s Natural Resource Department (assisted by Robert Kyikavichik, Ryan Kyikavichik, Michael Frost, Freddie Frost, Devon Kyikavichik) and Parks Canada Agency (assisted by Leila Sumi). We thank Shel Graupe, Megan Williams, and Dorothy Cooley for their logistical help in coordinating this research. We extend a special thanks to the Netro family for allowing us to conduct this research in their traditional camp area. We also acknowledge Ian McDonald (Parks Canada) for discussions on incorporating artificial substrate samplers for hydroecological monitoring in Vuntut National Park.


  1. Ács, É. & K. T. Kiss, 1993. Colonization processes of diatoms on artificial substrates in the River Danube near Budapest (Hungary). Hydrobiologia 269(270): 307–315.CrossRefGoogle Scholar
  2. Arctic Climate Impact Assessment (ACIA), 2004. Impacts of a warming Arctic. Cambridge University Press, New York: 139 pp.Google Scholar
  3. Bailey, R. C., R. H. Norris & T. B. Reynoldson, 2004. Bioassessment of Freshwater Ecosystems Using the Reference Condition Approach. Springer, New York: 170 pp.CrossRefGoogle Scholar
  4. Balasubramaniam, A. M., 2009. Community-based research, youth outdoor education and other highlights of a northern research internship experience in Old Crow, Yukon Territory. Meridian Spring/Summer: 14–18.Google Scholar
  5. Balasubramaniam, A. M., R. I. Hall, B. B. Wolfe & J. N. Sweetman, 2011. Assessing the effects of snowmelt and rainfall on limnological conditions of thermokarst lakes in the Old Crow Flats, Yukon Territory. Society of Canadian Limnologists 2011 Abstracts.Google Scholar
  6. Barbiero, R. P., 2000. A multi-lake comparison of epilithic diatom communities on natural and artificial substrates. Hydrobiologia 438: 158–170.CrossRefGoogle Scholar
  7. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27: 184–189.CrossRefGoogle Scholar
  8. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron & H. Bennion, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal and Siliceous Indicators, Vol. 3. Kluwer, Dordrecht: 155–202.CrossRefGoogle Scholar
  9. Bennion, H., C. D. Sayer, J. Tibby & H. J. Carrick, 2010. Diatoms as indicators of environmental change in shallow lakes. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 152–173.Google Scholar
  10. Biggs, B. J. F., 1988. Artificial substrate exposure times for periphyton biomass estimates in rivers. New Zealand Journal of Marine and Freshwater Research 22: 507–515.CrossRefGoogle Scholar
  11. Birks, H. J. B., 2010. Numerical methods for the analysis of diatom assemblage data. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Earth and Environmental Sciences. Cambridge University Press, Cambridge: 23–54.Google Scholar
  12. Blindow, I., 1987. The composition and density of epiphyton on several species of submerged macrophytes—the neutral substrate hypothesis tested. Aquatic Botany 29: 157–168.CrossRefGoogle Scholar
  13. Brazner, J. C., N. P. Danz, G. J. Niemi, R. R. Regal, A. S. Trebitz, R. W. Howe, J. M. Hanowski, L. B. Johnson, J. J. H. Ciborowski, C. A. Johnston, E. D. Reavie, V. J. Brady & G. V. Sgro, 2007. Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: a multi-assemblage approach. Ecological Indicators 7: 610–635.CrossRefGoogle Scholar
  14. Brown, S. D. & A. P. Austin, 1973. Spatial and temporal variation in periphyton and physico-chemical conditions in the littoral of a lake. Archiv für Hydrobiologie 71: 183–232.Google Scholar
  15. Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.CrossRefGoogle Scholar
  16. Cattaneo, A. & M. C. Amireault, 1992. How artificial are artificial substrata for periphyton? Journal of the North American Benthological Society 11: 244–256.CrossRefGoogle Scholar
  17. Cattaneo, A. & J. Kalff, 1978. Seasonal changes in the epiphyte community of natural and artificial macrophytes in Lake Memphremagog (Que. and VT.). Hydrobiologia 60: 135–144.CrossRefGoogle Scholar
  18. Christoffersen, K. S., E. Jeppesen, D. L. Moorhead & L. J. Tranvik, 2008. Food-web relationships and community structures in high-latitude lakes. In Vincent, W. F. & J. Laybourn-Parry (eds), Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford University Press, Oxford: 269–289.Google Scholar
  19. Clarke, K. R. & R. N. Gorley, 2006. Primer v6: Use Manual/Tutorial. PRIMER-E Ltd, Plymouth.Google Scholar
  20. Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. Plymouth Marine Laboratory, Plymouth.Google Scholar
  21. Dixit, S. S., J. P. Smol & J. C. Kingston, 1992. Diatoms: powerful indicators of environmental change. Environmental Science and Technology 26: 23–33.CrossRefGoogle Scholar
  22. Douglas, M. S. V. & J. P. Smol, 1993. Freshwater diatoms from high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Nova Hedwigia 57: 511–552.Google Scholar
  23. Douglas, M. S. V. & J. P. Smol, 1994. Limnology of high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Archiv für Hydrobiologie 131: 401–434.Google Scholar
  24. Douglas, M. S. V. & J. P. Smol, 1995. Periphytic diatom assemblages from high arctic ponds. Journal of Phycology 31: 60–69.CrossRefGoogle Scholar
  25. Environment Canada, 1994. Manual of Analytical Methods: Major Ions and Nutrients, Volume 1. National Laboratory for Environmental Testing. Canadian Centre for Inland Waters, Burlington, ON.Google Scholar
  26. Environment Canada, 2010. National Climate Data and Information Archive (Accessible at:
  27. Glew, J. R., 1991. A miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology 5: 285–287.CrossRefGoogle Scholar
  28. Growns, I., 1999. Is genus or species identification of periphytic diatoms required to determine the impact of river regulation. Journal of Applied Phycology 11: 273–283.CrossRefGoogle Scholar
  29. Hansson, L. A., 1992. The role of food-chain composition and nutrient availability in shaping algal biomass development. Ecology 73: 241–247.CrossRefGoogle Scholar
  30. Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.PubMedCrossRefGoogle Scholar
  31. Hughes, O. L., 1972. Surficial geology of northern Yukon Territory and northwestern district of Mackenzie, Northwest Territories. Geological Survey of Canada paper: 69-36.Google Scholar
  32. Kattsov, V. M., E. Källén, H. Cattle, J. Christensen, H. Drange, I. Hanssen-Bauer, T. Jóhannesen, I. Karol, J. Räisänen, G. Svensson & S. Vavulin, 2005. Future Climate Change: Modeling and Scenarios for the Arctic. Arctic Climate Impact Assessment. Cambridge University Press, Cambridge: 100–146.Google Scholar
  33. Kelly, M. G., A. Cazaubon, E. Coring, A. Dell’Uomo, L. Ector, B. Goldsmith, H. Guasch, J. Hürlimann, A. Jarlman, B. Kawecka, J. Kwandrans, R. Laugaste, E. A. Lindstrøm, M. Leitao, P. Marvan, J. Padis’ak, E. Pipp, J. Prygiel, E. Rott, S. Sabater, H. van Dam & J. Vizinet, 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224.CrossRefGoogle Scholar
  34. Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge: 528.Google Scholar
  35. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. Süsswasserflora von Mitteleuropa. Band 2 (1–4), vols. 1–4. Gustav Fisher Verlag, Stuttgart.Google Scholar
  36. Labrecque, S., D. Lacelle, C. Duguay, B. Lauriol & J. Hawkings, 2009. Contemporary (1951–2001) evolution of lakes in the Old Crow Basin, northern Yukon, Canada: remote sensing, numerical modeling and stable isotope analysis. Arctic 62: 225–238.Google Scholar
  37. Lauriol, B., C. R. Duguay & A. Riel, 2002. Response of the Porcupine and Old Crow rivers in northern Yukon, Canada, to Holocene climatic change. The Holocene 12: 27–34.CrossRefGoogle Scholar
  38. Lavoie, I., S. Campeau, F. Darchambeau, G. Cabana & P. J. Dillon, 2008. Are diatoms good integrators of temporal variability in stream water quality? Freshwater Biology 53: 827–841.CrossRefGoogle Scholar
  39. Lawler, J. J., S. L. Shafer, D. White, P. Kareiva, E. P. Maurer, A. R. Blaustein & P. J. Bartlein, 2009. Projected climate-induced faunal change in the western hemisphere. Ecology 90: 588–597.PubMedCrossRefGoogle Scholar
  40. MacDonald, L. A., K. W. Turner, A. M. Balasubramaniam, B. B. Wolfe, R. I. Hall & J. N. Sweetman, 2011. Tracking hydrological responses of a thermokarst lake in the Old Crow Flats (Yukon Territory, Canada) to recent climate variability using aerial photographs and paleolimnological methods. Hydrological Processes. doi: 10.1002/hyp.8116.
  41. Mesquita, P. S., F. J. Wrona & T. D. Prowse, 2010. Effects of retrogressive permafrost thaw slumping on sediment chemistry and submerged macrophytes in Arctic tundra lakes. Freshwater Biology 55: 2347–2358.Google Scholar
  42. Michelutti, N., A. J. Holtham, M. S. V. Douglas & J. P. Smol, 2003. Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. Journal of Phycology 39: 465–480.CrossRefGoogle Scholar
  43. Michelutti, N., M. S. V. Douglas & J. P. Smol, 2007. Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biology 30: 1459–1473.CrossRefGoogle Scholar
  44. Morell, G. & J. R. Dietrich, 1993. Evaluation of the hydrocarbon prospectivity of the Old Crow Flats area of northern Yukon. Bulletin of Canadian Petroleum Geology 41: 32–45.Google Scholar
  45. Moser, K. A., G. M. MacDonald & J. P. Smol, 1996. Applications of freshwater diatoms to geographical research. Progress in Physical Geography 20: 21–52.CrossRefGoogle Scholar
  46. Newall, P., N. Bate & L. Metzeling, 2006. A comparison of diatom and macroinvertebrate classification of sites in the Kiewa River system, Australia. Hydrobiologia 572: 131–149.CrossRefGoogle Scholar
  47. Nicotri, M. E., 1977. Grazing effects of four marine intertidal herbivores on the microflora. Ecology 58: 1020–1032.CrossRefGoogle Scholar
  48. Pip, E. & G. G. C. Robinson, 1984. A comparison of periphyton composition on eleven species of submerged macrophytes. Hydrobiological Bulletin 18: 109–118.CrossRefGoogle Scholar
  49. Plug, L. J., C. Walls & B. M. Scott, 2008. Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophysical Research Letters 35: LO3502.CrossRefGoogle Scholar
  50. Prowse, T. D. & K. Brown, 2010. Hydro-ecological effects of changing Arctic river and lake ice covers: a review. Hydrology Research 41: 454–461.CrossRefGoogle Scholar
  51. Prowse, T. D., F. J. Wrona, J. D. Reist, J. J. Gibson, J. E. Hobbie, L. M. J. Lévesque & W. F. Vincent, 2006. Climate change effects on hydroecology of Arctic freshwater ecosystems. Ambio 35: 347–358.PubMedCrossRefGoogle Scholar
  52. Reavie, E. D., R. P. Axler, G. V. Sgro, N. P. Danz, J. C. Kingston, A. R. Kireta, T. N. Brown, T. P. Hollenhorst & M. J. Ferguson, 2006. Diatom-based weighted-averaging transfer functions for Great Lakes coastal water quality: relationships to watershed characteristics. Journal of Great Lakes Research 32: 321–347.CrossRefGoogle Scholar
  53. Resh, V. H., 2008. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environmental and Monitoring Assessment 138: 131–138.CrossRefGoogle Scholar
  54. Riordan, B., D. Verbyla & A. D. McGuire, 2006. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. Journal of Geophysical Research 111: G04002.CrossRefGoogle Scholar
  55. Round, F. E., 1991. Diatoms in river water-monitoring studies. Journal of Applied Phycology 3: 129–145.CrossRefGoogle Scholar
  56. Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. Mcdonald, B. J. Nicholson, N. T. Roulet & J. P. Smol, 1997. Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes 11: 873–902.CrossRefGoogle Scholar
  57. Rowland, J. C., C. E. Jones, G. Altmann, R. Bryan, B. T. Crosby, G. L. Geernaert, L. D. Hinzman, D. L. Kane, D. M. Lawrence, A. Mancino, P. Marsh, J. P. McNamara, V. E. Romanovsky, H. Toniolo, B. J. Travis, E. Trochim & C. J. Wilson, 2010. Arctic landscapes in transition: responses to thawing permafrost. EOS, Transactions, American Geophysical Union 91: 229–230.CrossRefGoogle Scholar
  58. Rühland, K. & J. P. Smol, 2005. Diatom shifts as evidence for recent subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 226: 1–16.CrossRefGoogle Scholar
  59. Schindler, D. W. & J. P. Smol, 2006. Cumulative effects of climate warming and other human activities on freshwaters of Arctic and subarctic North America. Ambio 35: 160–168.PubMedCrossRefGoogle Scholar
  60. Siver, P. A., 1977. Comparison of attached diatom communities on natural and artificial substrates. Journal of Phycology 13: 402–406.Google Scholar
  61. Smith, L. C., Y. Sheng, G. M. MacDonald & L. D. Hinzman, 2005. Disappearing Arctic lakes. Science 308: 1429.PubMedCrossRefGoogle Scholar
  62. Smol, J. P. & M. S. V. Douglas, 2007. Crossing the final ecological threshold in high Arctic ponds. Proceedings of the National Academy of Sciences 104: 12395–12397.CrossRefGoogle Scholar
  63. Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. V. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Rühland, S. Sorvari, D. Antoniades, S. J. Brooks, M. A. Fallu, M. Hughes, B. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, É. Saulnier-Talbot, S. Siitonen, N. Solovieva & J. Weckström, 2005. Climate-driven regime shifts in the biological communities of Arctic lakes. Proceedings of the National Academy of Sciences 102: 4397–4402.CrossRefGoogle Scholar
  64. Stewart, K. A. & S. F. Lamoureux, 2011. Connections between river runoff and limnological conditions in adjacent high Arctic lakes: Cape Bounty, Melville Island, Nunavut. Arctic 64: 169–182.Google Scholar
  65. Summer, W. T. & C. D. McIntire, 1982. Grazer–periphyton interactions in laboratory streams. Archiv für Hydrobiologie 93: 135–157.Google Scholar
  66. ter Braak, C. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advancements in Ecological Research 18: 271–317.CrossRefGoogle Scholar
  67. ter Braak, C. J. F. & P. Šmilauer, 2002. Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.Google Scholar
  68. Turner, K. W., B. B. Wolfe & T. W. D. Edwards, 2010. Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon Territory, Canada, using water isotope tracers. Journal of Hydrology 386: 103–117.CrossRefGoogle Scholar
  69. U.S. EPA. 2002. Methods for Evaluating Wetland Condition: Using Algae to Assess Environmental Conditions in wetlands. Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-021.Google Scholar
  70. Veres, A. J., R. Pienitz & J. P. Smol, 1995. Lake water salinity and periphytic diatom succession in three subarctic lakes, Yukon Territory, Canada. Arctic 48: 63–70.Google Scholar
  71. Wiklund, J. A., N. Bozinovski, R. I. Hall & B. B. Wolfe, 2010. Epiphytic diatoms as flood indicators. Journal of Paleolimnology 44: 25–42.CrossRefGoogle Scholar
  72. Wolfe, B. B., M. M. Humphries, M. F. J. Pisaric, A. M. Balasubramaniam, C. R. Burn, L. Chan, D. Cooley, D. G. Froese, S. Graupe, R. I. Hall, T. Lantz, T. J. Porter, P. Roy-Leveillee, K. W. Turner, S. D. Wesche & M. Williams, 2011. Environmental change and traditional use of the Old Crow Flats in northern Canada: an IPY opportunity to meet the challenges of the new northern research paradigm. Arctic 64: 127–135.Google Scholar
  73. Zazula, G. D., A. Duk-Rodkin, C. E. Schweger & R. E. Morlan, 2004. Late Pleistocene chronology of glacial Lake Old Crow and the north-west margin of the Laurentide Ice Sheet. In Ehlers, J. & P. L. Gibbard (eds), Quaternary Glaciations—Extent and Chronology, Elsevier, New York: 347–362.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lauren A. MacDonald
    • 1
  • Ann M. Balasubramaniam
    • 1
  • Roland I. Hall
    • 1
  • Brent B. Wolfe
    • 2
  • Jon N. Sweetman
    • 3
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada
  2. 2.Department of Geography and Environmental StudiesWilfrid Laurier UniversityWaterlooCanada
  3. 3.Parks Canada, Western and Northern Service CenterWinnipegCanada

Personalised recommendations