Advertisement

Hydrobiologia

, Volume 684, Issue 1, pp 15–33 | Cite as

Temporal trends in algae, benthic invertebrate, and fish assemblages in streams and rivers draining basins of varying land use in the south-central United States, 1993–2007

  • Matthew P. MillerEmail author
  • Jonathan G. Kennen
  • Jeffrey A. Mabe
  • Scott V. Mize
Primary Research Paper

Abstract

Site-specific temporal trends in algae, benthic invertebrate, and fish assemblages were investigated in 15 streams and rivers draining basins of varying land use in the south-central United States from 1993–2007. A multivariate approach was used to identify sites with statistically significant trends in aquatic assemblages which were then tested for correlations with assemblage metrics and abiotic environmental variables (climate, water quality, streamflow, and physical habitat). Significant temporal trends in one or more of the aquatic assemblages were identified at more than half (eight of 15) of the streams in the study. Assemblage metrics and abiotic environmental variables found to be significantly correlated with aquatic assemblages differed between land use categories. For example, algal assemblages at undeveloped sites were associated with physical habitat, while algal assemblages at more anthropogenically altered sites (agricultural and urban) were associated with nutrient and streamflow metrics. In urban stream sites results indicate that streamflow metrics may act as important controls on water quality conditions, as represented by aquatic assemblage metrics. The site-specific identification of biotic trends and abiotic–biotic relations presented here will provide valuable information that can inform interpretation of continued monitoring data and the design of future studies. In addition, the subsets of abiotic variables identified as potentially important drivers of change in aquatic assemblages provide policy makers and resource managers with information that will assist in the design and implementation of monitoring programs aimed at the protection of aquatic resources.

Keywords

Trends Multivariate Land use Algae Benthic invertebrates Fish 

Notes

Acknowledgments

We thank the many dedicated United States Geological Survey colleagues who acquired the samples that were used in this study. Reviews by A. Brasher, D. Sullivan, and two anonymous reviewers provided many helpful suggestions that greatly improved this manuscript. S. Boyack provided assistance with the generation of Figure 1. This work was funded by the U.S. Geological Survey National Water Quality Assessment Program. The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

References

  1. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd ed. U.S. Environmental Protection Agency 841-B-99-002.Google Scholar
  2. Biggs, B. J. F., 1995. The contribution of disturbance, catchment geology and land use to the habitat template of periphyton in stream ecosystems. Freshwater Biology 33: 419–438.CrossRefGoogle Scholar
  3. Black, R. W., P. W. Moran & J. D. Frankforter, 2010. Response of algal metrics to nutrients andphysical facts and identification of nutrient thresholds in agricultural streams. Environmental Monitoring and Assessment. doi: 10.1007/s10661-010-1539-8.
  4. Boulton, A. J., 2003. Parrallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.CrossRefGoogle Scholar
  5. Cardinale, B. J., 2011. Biodiversity improves water quality through nice partitioning. Nature 472: 86–89.PubMedCrossRefGoogle Scholar
  6. Charles, D. F., C. Knowles & R. S. Davis, 2002. Protocols for the Analysis of Algal Samples Collected as Part of the U.S. Geological Survey National Water-Quality Assessment Program. Report No. 02-06. Patrick Center for Environmental Research, The Academy of Natural Sciences Report No. 02-06, Philadelphia, PA.Google Scholar
  7. Clarke, K. R. & M. Anisworth, 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.CrossRefGoogle Scholar
  8. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. Plymouth, England.Google Scholar
  9. Clarke, K. R. & R. M. Warwick, 1998. Quantifying structural redundancy in ecological communities. Oecologica 113: 278–289.CrossRefGoogle Scholar
  10. Clarke, K. R. & R. M. Warwick, 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. Plymouth, England.Google Scholar
  11. Clarke, K. R., P. J. Somerfield, L. Airoldi & R. M. Warwick, 2006. Exploring interactions by second-state community analysis. Journal of Experimental Marine Biology and Ecology 338: 179–192.CrossRefGoogle Scholar
  12. Clausen, B. & B. J. F. Biggs, 1997. Relationships between benthic biota and hydrological indices in New Zealand streams. Freshwater Biology 38: 327–342.CrossRefGoogle Scholar
  13. Collier, K. J. & J. M. Quinn, 2003. Land-use influences macroinvertebrate community response following a pulse disturbance. Freshwater Biology 48: 1462–1481.CrossRefGoogle Scholar
  14. Commission for Environmental Cooperation, 1997. Ecological Regions of North America: Toward a Common Perspective. NAFTA, Montreal.Google Scholar
  15. Cuffney, T. F., 2003. User’s Manual for the National Water-Quality Assessment Program Invertebrate Data Analysis System (IDAS) Software: Version 3. U.S. Geological Survey Open-File Report 03-172.Google Scholar
  16. Cuffney, T. F., M. E. Gurtz & M. R. Meador, 1993. Methods for Collecting Benthic Invertebrate Samples as Part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 93-406.Google Scholar
  17. Cuffney, T. F., H. Zappia, E. M. P. Giddings & J. F. Coles, 2005. Effects of urbanization on benthic macroinvertebrate assemblages in contrasting environmental settings: Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. In Brown, L. R., R. M. Hughes, R. Gray & M. R. Meador (eds), Effects of Urbanization on Stream Ecosystems. American Fisheries Society, Symposium 47, Bethesda, Maryland: 61–407.Google Scholar
  18. Cuffney, T. F., M. D. Bilger & A. M. Haigler, 2007. Ambiguous taxa: effects on the characterization and interpretation of invertebrate assemblages. Journal of the North American Benthological Society 26: 286–307.CrossRefGoogle Scholar
  19. Dewson, Z. S., A. B. W. James & R. G. Death, 2007. Invertebrate community responses to experimentally reduced discharge in small streams of different water quality. Journal of the North American Benthological Society 26: 754–766.CrossRefGoogle Scholar
  20. Elser, J. J., T. Anderson, J. S. Baron, A.-K. Bergstrom, M. Jansson, M. Kyle, K. R. Nydick, L. Steger & D. O. Hessen, 2009a. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835–837.PubMedCrossRefGoogle Scholar
  21. Elser, J. J., M. Kyle, L. Steger, K. R. Nydick & J. S. Baron, 2009b. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition. Ecology 90: 3062–3073.PubMedCrossRefGoogle Scholar
  22. Fitzpatrick, F. A., I. R. Waite, P. J. D’Arconte, M. R. Meador, M. A. Maupin & M. E.Gurtz, 1998. Revised Methods for Characterizing Stream Habitat in the National Water Quality Assessment Program. U.S. Geological Survey Water Resources Investigations Report 98-4052.Google Scholar
  23. Froese, R. & D. Pauly, 2009. Fishbase [available on internet at http://www.fishbase.org]. Accessed 20 June 2009.
  24. Gilliom, R. J., J. E. Barbash, C. G. Crawford, P. A. Hamilton, J. D. Martin, N. Nakagaki, L. H. Nowell, J. C. Scott, P. E. Stackelberg, G. P. Thelin & D. M. Wolock, 2006. The Quality of Our Nation’s Waters—Pesticides in the Nation’s Streams and Ground Water, 1992–2001. U.S. Geological Survey Circular 1291.Google Scholar
  25. Goldstein, R. M. & M. R. Meador, 2004. Comparisons of fish species traits from small streams to large rivers. Transactions of the American Fisheries Society 133: 971–983.CrossRefGoogle Scholar
  26. Grossman, G. D., R. E. Ratajczak, M. Crawford & M. C. Freeman, 1998. Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecological Monographs 68: 395–420.CrossRefGoogle Scholar
  27. Hambrook-Berkman, J. A., B. C. Scudder, M. A. Lutz & M. A. Harris, 2010. Evaluation of Aquatic Biota in Relation to Environmental Characteristics Measured at Multiple Scales in Agricultural Streams of the Midwest: 1993–2004. U.S. Geological Survey Scientific Investigations Report 2010-5051.Google Scholar
  28. Helsel, D. R. & R. M. Hirsch, 1992. Statistical Methods in Water Resources. Elsevier, New York.Google Scholar
  29. Jackson, J. K. & L. Füreder, 2006. Long-term studies of freshwater macroinvertebrates: a review of the frequency, duration and ecological significance. Freshwater Biology 51: 591–603.CrossRefGoogle Scholar
  30. Kennen, J. G., K. R. Murray & K. M. Beaulieu, 2010. Determining hydrologic factors that influence stream macroinvertebrate assemblages in the northeastern US. Ecohydrology 3: 88–106.Google Scholar
  31. Köhler, J. & S. Hoeg, 2000. Phytoplankton selection in a river-lake system during two decades of changing nutrient supply. Hydrobiologia 424: 13–24.CrossRefGoogle Scholar
  32. Konrad, C. P., A. M. D. Brasher & J. T. May, 2008. Assessing streamflow characteristics as limiting factors on benthic invertebrate assemblages in streams across the western United States. Freshwater Biology 53: 1983–1998.CrossRefGoogle Scholar
  33. Lenat, D. R., 1983. Chironomid taxa richness: natural variation and use in pollution assessment. Freshwater Invertebrate Biology 2: 192–198.CrossRefGoogle Scholar
  34. Lenat, D. R., 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. Journal of the North American Benthological Society 12: 279–290.CrossRefGoogle Scholar
  35. McCormick, P. V. & J. Carins, 1994. Algae as indicators of environmental change. Journal of Applied Phycology 6: 509–526.CrossRefGoogle Scholar
  36. McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith & F. H. Sklar, 1996. Periphyton-water quality relationships along a nutrient gradient in the northern Florida Everglades. Journal of the North American Benthological Society 15: 433–449.CrossRefGoogle Scholar
  37. McElravy, E. P., G. A. Lamberti & V. H. Resh, 1989. Year-to-year variation in the aquatic macroinvertebrate fauna of a northern California stream. Journal of the North American Benthological Society 8: 51–63.CrossRefGoogle Scholar
  38. Meador, M. R., T. F. Cuffney & M. E. Gurtz, 1993a. Methods for Sampling Fish Communities as Part of the National Water-Quality Assessment Program. U.S. geological Survey Open-File Report 93-104.Google Scholar
  39. Meador, M. R., Hupp, C. R., Cuffney, T. F., Gurtz, M. E., 1993b. Methods for Characterizing Stream Habitat as Part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 93-408, Reston, VA: 48 pp.Google Scholar
  40. Moulton, S. R. II, J. L. Carter, S. A. Grotheer, T. F. Cuffney & T. M. Short, 2000. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. U.S. Geological Survey Open-File Report 00-212.Google Scholar
  41. Moulton, S. R. II, J. G. Kennen, R. M. Goldstein& J. A. Hambrook, 2002. Revised Protocols for Sampling Algal, Invertebrate, And Fish Communities as Part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 02-150.Google Scholar
  42. Peterson, C. G., 1996. Response of benthic algal communities to natural physical disturbance. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 375–402.CrossRefGoogle Scholar
  43. Peterson, C. G. & N. B. Grimm, 1992. Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. Journal of the North American Benthological Society 11: 20–36.CrossRefGoogle Scholar
  44. Poff, N. L. & J. D. Allan, 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76: 606–627.CrossRefGoogle Scholar
  45. Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25: 730–755.CrossRefGoogle Scholar
  46. Porter, S. D., T. F. Cuffney, M. E. Gurtz & M. R. Meador, 1993. Methods for Collecting Algal Samples as part of the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 93-409.Google Scholar
  47. Porter, S. D., D. K. Mueller, N. E. Spahr, M. D. Munn & N. M. Dubrovsky, 2008. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters. Freshwater Biology 53: 1036–1054.CrossRefGoogle Scholar
  48. Potapova, M. G. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.CrossRefGoogle Scholar
  49. Power, M. E. & A. J. Stewart, 1987. Disturbance and recovery of an algal assemblage following flooding in an Oklahoma stream. American Midland Naturalist 117: 333–345.CrossRefGoogle Scholar
  50. Pusey, B. J., M. J. Kennard & A. H. Arthington, 2000. Discharge variability and the development of predictive models relating stream fish assemblage structure to habitat in northeastern Australia. Ecology of Freshwater Fish 9: 30–50.CrossRefGoogle Scholar
  51. Richter, B. D., J. V. Baumgartner, J. Powell & D. P. Braun, 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology 10: 1163–1174.CrossRefGoogle Scholar
  52. Ross, S. T. & J. A. Baker, 1983. The response of fishes to periodic spring floods in a southeastern stream. American Midland Naturalist 109: 1–14.CrossRefGoogle Scholar
  53. Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.CrossRefGoogle Scholar
  54. Roy, A. H., A. D. Rosemond, M. J. Paul, D. S. Leigh & J. B. Wallace, 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshwater Biology 48: 329–346.CrossRefGoogle Scholar
  55. Runkel, R. L., C. G. Crawford & T. A. Cohn, 2004. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers. U.S. Geological Survey Techniques and Methods Book 4, Chapter A5.Google Scholar
  56. Scarsbrook, M. R., 2002. Persistence and stability of lotic invertebrate communities in New Zealand. Freshwater Biology 47: 417–431.CrossRefGoogle Scholar
  57. Scarsbrook, M. R. & C. R. Townsend, 1993. Stream community structure in relation to spatial and temporal variation: a habitat templet study of two contrasting New Zealand streams. Freshwater Biology 29: 395–410.CrossRefGoogle Scholar
  58. Sickman, J. O., J. L. Stoddard & J. M. Melack, 2002. Regional analysis of inorganic nitrogen yield and retention in high-elevation ecosystems of the Sierra Nevada and Rocky Mountains. Biogeochemistry 57(58): 341–374.CrossRefGoogle Scholar
  59. U.S. Census Bureau, 1991. Census of Population aAnd Housing, 1990. U.S. Census Bureau Technical Documentation Public Law 84-71.Google Scholar
  60. U.S. Census Bureau, 2000. Census 2000 Redistricting Data Summary File. U.S. Census Bureau Technical Documentation Public Law 94-171.Google Scholar
  61. Wallace, J. B., J. W. Grubaugh & M. R. Whiles, 1996. Biotic indices and stream ecosystem processes: results from an experimental study. Ecological Applications 6: 140–151.CrossRefGoogle Scholar
  62. Ward, J. V. & J. A. Stanford, 1983. The intermediate disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor: 347–356.Google Scholar
  63. Williams, M. W., J. S. Baron, N. Caine, R. Sommerfield & R. Sanford, 1996. Nitrogen Saturation in the Rocky Mountains. Envrionmental Science and Technology 30: 640–646.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • Matthew P. Miller
    • 1
    Email author
  • Jonathan G. Kennen
    • 2
  • Jeffrey A. Mabe
    • 3
  • Scott V. Mize
    • 3
  1. 1.United States Geological Survey, Utah Water Science CenterMoabUSA
  2. 2.United States Geological Survey, New Jersey Water Science CenterWest TrentonUSA
  3. 3.United States Geological Survey, Texas Water Science CenterAustinUSA

Personalised recommendations