Skip to main content
Log in

Intraspecific selectivity, compensatory feeding and flexible homeostasis in the phagotrophic flagellate Oxyrrhis marina: three ways to handle food quality fluctuations

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The phagotrophic flagellate Oxyrrhis marina shows a strong stoichiometric plasticity when fed differently grown Rhodomonas salina. We tested whether differently pre-conditioned O. marina displayed selective feeding behaviour from a mixture of nitrogen and phosphorus depleted R. salina. We observed selective feeding of O. marina, always selecting phosphorus rich R. salina independent of the pre-conditioning of the protists. In a second experiment, O. marina was again pre-conditioned either with nitrogen- or phosphorus-depleted R. salina and was refed with either of the differently limited R. salina in single food treatments (not in a mixture). The phagotrophic flagellate displayed compensatory feeding which means that O. marina feed more on the food source which they were not given before. Due to its stoichiometric plasticity, O. marina might handle bad quality food by following the stoichiometry of its prey and additionally by active selective feeding towards P-rich algae to enhance growth. Post-ingestion selection might as well be an important feature which means that ingested elements in excess are quickly excreted and scarce elements are ingested through accelerated food uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, T. R., D. O. Hessen, J. J. Elser & J. Urabe, 2005. Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. American Naturalist 165(1): 1–15.

    Article  PubMed  Google Scholar 

  • Andersson, A., U. Larsson & A. Hagström, 1986. Size-selective grazing by a microflagellate on pelagic bacteria. Marine Ecology Progress Series 33(1): 51–57.

    Article  Google Scholar 

  • Boersma, M. & C. Kreutzer, 2002. Life at the edge: is food quality really of minor importance at low quantities? Ecology 83(9): 2552–2561.

    Article  Google Scholar 

  • Buskey, E. J., 1997. Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum. Marine Ecology Progress Series 153: 77–89.

    Article  Google Scholar 

  • Buskey, E. J. & D. K. Stoecker, 1988. Locomotory patterns of the planktonic ciliate Favella sp.: adaptations for remaining within food patches. Bulletin of Marine Science 43(3): 783–796.

    Google Scholar 

  • Buskey, E. J. & D. K. Stoecker, 1989. Behavioral responses of the marine tintinnid Favella sp. to phytoplankton: influence of chemical, mechanical and photic stimuli. Journal of Experimental Marine Biology and Ecology 132(1): 1–16.

    Article  Google Scholar 

  • Chesson, J., 1978. Measuring preference in selective predation. Ecology 59: 211–215.

    Article  Google Scholar 

  • Chesson, J., 1983. The estimation and analysis of preference and its relationship to foraging models. Ecology 64: 1297–1304.

    Article  Google Scholar 

  • Chrzanowski, T. H. & K. Šimek, 1990. Prey-size selection by freshwater flagellated protozoa. Limnology and Oceanography 35(7): 1429–1436.

    Article  Google Scholar 

  • Cruz-Rivera, E. & M. E. Hay, 2000. Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81(1): 201–219.

    Article  Google Scholar 

  • Da Silva, A. F., S. O. Lourenco & R. M. Chaloub, 2009. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp (Cryptophyceae). Aquatic Botany 91: 291–297.

    Article  CAS  Google Scholar 

  • Davidson, K., E. C. Roberts, A. M. Wilson & E. Mitchell, 2005. The role of prey nutritional status in governing protozoan nitrogen regeneration efficiency. Protist 156(1): 45–62.

    Article  PubMed  CAS  Google Scholar 

  • DeMott, W. R., 1998. Utilization of a cyanobacterium and a phosphorus deficient green alga as complementary resources by daphnids. Ecology 79(7): 2463–2481.

    Article  Google Scholar 

  • Elser, J. J. & J. Urabe, 1999. The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80(3): 735–751.

    Article  Google Scholar 

  • Fenchel, T. & N. Blackburn, 1999. Motile chemosensory behaviour of phagotrophic protists: mechanisms for and efficiency in congregating at food patches. Protist 150(3): 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on feeding behavior of marine planktonic copepod Calanus pacificus. Limnology and Oceanography 17(6): 805–815.

    Article  Google Scholar 

  • Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen & V. Matzek, 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109(1): 18–28.

    Article  Google Scholar 

  • Frost, P. C., J. P. Benstead, W. F. Cross, H. Hillebrand, J. H. Larson, M. A. Xenopoulos & T. Yoshida, 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9(7): 774–779.

    Article  PubMed  Google Scholar 

  • Gonzalez, J. M., E. B. Sherr & B. F. Sherr, 1993. Differential feeding by marine flagellates on growing versus starving, and on motile versus nonmotile, bacterial prey. Marine Ecology Progress Series 102(3): 257–267.

    Google Scholar 

  • Granum, E., S. Kirkvold & S. M. Myklestad, 2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Marine Ecology Progress Series 242: 83–94.

    Article  CAS  Google Scholar 

  • Grasshoff, K., K. Kremling & M. Ehrhardt, 1999. Methods of seawater analysis, 3rd ed. Wiley-VCH, Weinheim, New York, Chiester, Brisbane, Singopore, Toronto.

    Book  Google Scholar 

  • Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8: 229–239.

    Article  PubMed  CAS  Google Scholar 

  • Hantzsche, F. M. & M. Boersma, 2010. Dietary-induced responses in the phagotrophic flagellate Oxyrrhis marina. Marine Biology 157(7): 1641–1651.

    Article  CAS  Google Scholar 

  • Jakobsen, H. H. & P. J. Hansen, 1997. Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp and the ciliate Balanion comatum – a comparative study. Marine Ecology Progress Series 158: 75–86.

    Article  Google Scholar 

  • Jakobsen, H. H., C. Hyatt & E. J. Buskey, 2001. Growth and grazing on the ‘Texas brown tide’ alga Aureoumbra lagunensis by the tintinnid Amphorides quadrilineata. Aquatic Microbial Ecology 23(3): 245–252.

    Article  Google Scholar 

  • Jakobsen, H. H., L. M. Everett & S. L. Strom, 2006. Hydromechanical signaling between the ciliate Mesodinium pulex and motile protist prey. Aquatic Microbial Ecology 44(2): 197–206.

    Article  Google Scholar 

  • Lee, J. J., 1980. Informational energy flow as an aspect of protozoan nutrition. Journal of Protozoology 27(1): 5–9.

    Google Scholar 

  • Löder, M. G. J., C. Meunier, K. H. Wiltshire, M. Boersma & N. Aberle, 2011. The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Marine Biology 158(7): 1551–1580.

    Article  Google Scholar 

  • Malzahn, A. M., F. Hantzsche, K. L. Schoo, M. Boersma & N. Aberle, 2010. Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162: 35–48.

    Article  PubMed  Google Scholar 

  • Martel, C. M., 2006. Prey location, recognition and ingestion by the phagotrophic marine dinoflagellate Oxyrrhis marina. Journal of Experimental Marine Biology and Ecology 335(2): 210–220.

    Article  Google Scholar 

  • Martel, C. M., 2009a. Nitrogen-deficient microalgae are rich in cell-surface mannose: Potential implications for prey biorecognition by phagotrophic protozoa. Brazilian Journal of Microbiology 40(1): 86–89.

    Article  CAS  Google Scholar 

  • Martel, C. M., 2009b. Conceptual bases for prey biorecognition and feeding selectivity in the microplanktonic marine phagotroph Oxyrrhis marina. Microbial Ecology 57(4): 589–597.

    Article  PubMed  Google Scholar 

  • Menden-Deuer, S. & D. Grünbaum, 2006. Individual foraging behaviors and population distributions of a planktonic predator aggregating to phytoplankton thin layers. Limnology and Oceanography 51(1): 109–116.

    Article  Google Scholar 

  • Mitra, A. & K. J. Flynn, 2005. Predator-prey interactions: is ‘ecological stoichiometry’ sufficient when good food goes bad? Journal of Plankton Research 27(5): 393–399.

    Article  Google Scholar 

  • Montagnes, D. J. S., A. B. Barbosa, J. Boenigk, K. Davidson, K. Jurgens, M. Macek, J. D. Parry, E. C. Roberts & K. Šimek, 2008. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquatic Microbial Ecology 53(1): 83–98.

    Article  Google Scholar 

  • Nakamura, Y., S.-Y. Suzuki & J. Hiromi, 1995. Growth and grazing of a naked heterotrophic dinoflagellate, Gyrodinium dominans. Aquatic Microbial Ecology 9(2): 157–164.

    Article  Google Scholar 

  • Raubenheimer, D. & S. A. Jones, 2006. Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Animal Behaviour 71: 1253–1262.

    Article  Google Scholar 

  • Roberts, E. C., M. V. Zubkov, M. Martin-Cereceda, G. Novarino & E. C. Wootton, 2006. Cell surface lectin-binding glycoconjugates on marine planktonic protists. FEMS Microbiology Letters 265(2): 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Sieracki, C. K., M. E. Sieracki & C. S. Yentsch, 1998. An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series 168: 285–296.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Stoecker, D., R. R. L. Guillard & R. M. Kavee, 1981. Selective predation by Favella ehrenbergii (Tintinnia) on and among dinoflagellates. The Biological Bulletin (Woods Hole) 160(1): 136–145.

    Article  Google Scholar 

  • Stoecker, D. K., T. L. Cucci, E. M. Hulburt & C. M. Yentsch, 1986. Selective feeding by Balanion sp. (Ciliata: Balanionidae) on phytoplankton that best support its growth. Journal of Experimental Marine Biology and Ecology 95(2): 113–130.

    Article  Google Scholar 

  • Strom, S., G. Wolfe, A. Slajer, S. Lambert & J. Clough, 2003. Chemical defense in the microplankton II: inhibition of protist feeding by beta-dimethylsulfoniopropionate (DMSP). Limnology and Oceanography 48(1): 230–237.

    Article  CAS  Google Scholar 

  • Strom, S. L., G. V. Wolfe & K. J. Bright, 2007. Responses of marine planktonic protists to amino acids: feeding inhibition and swimming behavior in the ciliate Favella sp. Aquatic Microbial Ecology 47(2): 107–121.

    Article  CAS  Google Scholar 

  • Svensson, J.-E. & J. A. E. Stenson, 1991. Herbivoran impact on phytoplankton community structure. Hydrobiologia 226: 71–80.

    Article  Google Scholar 

  • Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.

    Article  Google Scholar 

  • Verity, P. G., 1988. Chemosensory behavior in marine planktonic ciliates. Bulletin of Marine Science 43(3): 772–782.

    Google Scholar 

  • Verity, P. G., 1991. Feeding in planktonic protozoans: evidence for non-random acquisition of prey. Journal of Protozoology 38(1): 69–76.

    Google Scholar 

  • Wetz, M. S. & P. A. Wheeler, 2007. Release of dissolved organic matter by coastal diatoms. Limnology and Oceanography 52(2): 798–807.

    Article  CAS  Google Scholar 

  • Wootton, E. C., M. V. Zubkov, D. H. Jones, R. H. Jones, C. M. Martel, C. A. Thornton & E. C. Roberts, 2007. Biochemical prey recognition by planktonic protozoa. Environmental Microbiology 9(1): 216–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is a part of the PhD studies conducted by C.M. and F.M.H. at the Biologische Anstalt Helgoland, Alfred-Wegener-Institut Bremerhaven, Germany, financed by Deutsche Forschungsgemeinschaft (DFG) and GKSS Geesthacht, Germany, and complies with current German law on animal studies. We thank two anonymous reviewers, Martin Löder, Christina Gebühr, and Petra Brandt for useful discussions. Special thanks to Katherina Schoo whose linguistic suggestions improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Léo Meunier.

Additional information

Handling editor: Sigrún Huld Jónasdóttir

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, C.L., Hantzsche, F.M., Cunha-Dupont, A.Ö. et al. Intraspecific selectivity, compensatory feeding and flexible homeostasis in the phagotrophic flagellate Oxyrrhis marina: three ways to handle food quality fluctuations. Hydrobiologia 680, 53–62 (2012). https://doi.org/10.1007/s10750-011-0900-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0900-4

Keywords

Navigation