Skip to main content
Log in

Paleolimnological reconstruction of the trophic state in Lake Balaton (Hungary) using Cladocera remains

  • CLADOCERA AS INDICATORS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The sediment of Lake Balaton (Hungary) provides important information about the lake’s history, particularly with regard to eutrophication. In this study, we used fossil pigment analysis and subfossil Cladocera remains preserved in a dated sediment core to identify trophic stages from ~250 bc to present. Dates of the most recent eutrophic events are in good agreement with previously published data. In general, the abundance and diversity of the Cladocera community increased with eutrophication and decreased with oligotrophication. The sediments of Lake Balaton were characterised by Chydoridae remains, of which Alona species were the most abundant. Of these, Alona quadrangularis and Alona affinis accounted for 40 and 20% of the total Cladocera remains, respectively. The trophic state of Lake Balaton varied between mesotrophic and eutrophic regimes. Seven different trophic periods were identified in Lake Balaton on the basis of Sedimentary Pigment Degradation Unit (SPDU) content of the sediment. Eutrophic states were (1) from ~250 to ~30 bc, (3) between ~300 and ~590 ad, (5) between 1834 and 1944 and (7) from the 1960s until present. Mesotrophic states were (2) ~30 bc to ~300 ad, (4) 590–1834, (6) 1944–1960s. Discriminant analysis of the cladoceran data confirmed these historic events, except for the short mesotrophic episode between 1944 and 1960. The first stage of eutrophication of Lake Balaton (~250 to ~30 bc) was characterised by extensive macrophyte vegetation, as indicated by the increasing abundance of vegetation-associated Cladocera species (Eurycercus lamellatus, Sida crystallina, Pleuroxus sp.). Intensification of eutrophication was identified since the 1980s, reflected by a high abundance of Bosmina species. The most significant planktivorous fish of Lake Balaton was the Sabre carp (Pelecus cultratus), and when its number decreased, the abundance of Bosmina species increased. This study shows that Cladocera are responsive to trophic state changes, underlining their importance as a tool for the assessment of lake eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, M. S. & R. T. Prentki, 1986. Sedimentary pigments as an index of the trophic status of Lake Mead. Hydrobiologia 143: 71–77.

    Article  CAS  Google Scholar 

  • Balogh, Cs., I. B. Muskó, L. G. Tóth & L. Nagy, 2008. Quantitative trends of zebra mussels in Lake Balaton (Hungary) in 2003–2005 at different water levels. Hydrobiologia 613: 57–69.

    Article  Google Scholar 

  • Bennett, K. D., 2005. Documentation for psimpoll 4.25 and psimcomb 1.3. C program for plotting pollen diagram and analysing pollen data. (http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html).

  • Bjerring, R., E. Becares, S. Declerck, E. M. Gross, L.-A. Hansson, T. Kairesalo, M. Nykänen, A. Halkiewicz, R. Kornijów, J. M. Conde Porcuna, M. Seferlis, T. Nõges, B. Moss, S. L. Amsinck, B. V. Odgaard & E. Jeppesen, 2009. Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshwater Biology 54: 2401–2417.

    Article  CAS  Google Scholar 

  • Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Fisheries and Aquatic Sciences 55: 1093–1103.

    Article  Google Scholar 

  • Buczkó, K., J. Korponai, J. Padisák & S. W. Starratt (eds), 2009. Paleolimnological proxies as tools of environmental reconstruction in fresh water. Developments in Hydrobiology, Vol. 208. Springer, New York.

    Google Scholar 

  • Chen, G. J., C. Dalton & D. Taylor, 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology 44: 465-481.

    Google Scholar 

  • Christoffersen, K., B. Riemann, A. Klysner & M. Søndergaard, 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnology and Oceanography 38: 5–573.

    Article  Google Scholar 

  • Cserny, T. & E. Nagy-Bodor, 2000. Limnogeology of Lake Balaton (Hungary). In Gierlowski-Kordesch, E. H. & K. R. Kelts (eds), Lake Basins Through Space and Time, Vol. 46. AAPG Studies in Geology, Tulsa: 605–618.

    Google Scholar 

  • Davidson, T. A., C. D. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2010. The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshwater Biology 55: 546–564.

    Article  CAS  Google Scholar 

  • DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.

    Article  Google Scholar 

  • Eggermont, H., D. Verschuren, L. Audenaert, L. Lens, J. Russell, G. Klaassen & O. Heiri, 2010. Limnological and ecological sensitivity of Rwenzori mountain lakes to climate warming. In Eggermont, H., M. Kernan & K. Martens (eds), Global change impacts on mountain lakes. Special Issue, Hydrobiologia, Vol. 648.: 123–142.

  • Frey, D. G., 1950. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Internationale Revue gesamten Hydrobiologie 44: 27–50.

    Article  Google Scholar 

  • Frey, D. G., 1962. Cladocera from the Eemian interglacial of Denmark. Journal of Paleontology 36: 1133–1154.

    Google Scholar 

  • Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of palaeoecology and palaeohydrology. John Wiley & Sons, Chichester: 667–692.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.

    Google Scholar 

  • Frey, D. G., 1991. First subfossil records of Daphnia headshields and shells (Anomopoda, Daphniidae) about 10 000 years old from northernmost Greenland, plus Alona guttata (Chydoridae). Journal of Paleolimnology 6: 193–197.

    Article  Google Scholar 

  • Galbarczyk-Gąsiorowska, L., M. Gąsiorowski & K. Szeroczyńska, 2009. Reconstruction of human influence during the last two centuries on two small oxbow lakes near Warsaw (Poland). In Buczkó, K., J. Korponai, J. Padisák & S. W. Starratt (eds), Palaeolimnological proxies as tools of environmental reconstruction in fresh water. Special Issue, Hydrobiologia, Vol. 631.: 173–183.

  • Gąsiorowski, M. & K. Szeroczyńska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the Histori of the Ostrowite Lake (northern Poland). Hydrobiologia 526: 137–144.

    Article  Google Scholar 

  • Grimm, E. C., 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13–35.

    Article  Google Scholar 

  • Goulden, C. E. & D. G. Frey, 1963. The occurrence and significance of lateral head pores in the genus Bosmina (Cladocera). Internationale Revue gesamten Hydrobiologie 48: 513–522.

    Article  Google Scholar 

  • Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103–106.

    Article  CAS  Google Scholar 

  • Gulyás, P. & L. Forró, 1999. Az ágascsápú rákok (Cladocera) kishatározója. Vízi Természet- és Könyezetvédelem 9. KGI, Budapest, 2nd edn. [A guide for the identification of Cladocera occurring in Hungary. In Hungarian].

  • G-Tóth, L., K. V. Balogh & N. P. Zánkai, 1986. Significance and degree of abioseston consumption in the filter-feeder Daphnia galeata Sars am Richard (Cladocera) in Lake Balaton. Archiv für Hydrobiologie 106: 45–60.

    Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Article  Google Scholar 

  • Hofmann, W., 2000. Response of the chydorid faunas to rapid climatic four alpine lakes at different altitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 281–292.

    Article  Google Scholar 

  • Hofmann, W., 2001. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of the Soppensee (Central Switzerland). Journal of Paleolimnology 25: 411–420.

    Article  Google Scholar 

  • Hořická, Z., E. Stuchlík, I. Hudec, M. Černý & J. Fott, 2006. Acidification and the structure of cladoceran zooplankton in mountain lakes: The Tatra Mountains (Slovakia, Poland). Biologia, Bratislava 61: 121–134.

    Article  Google Scholar 

  • Istvánovics, V., A. Osztoics & M. Honti, 2004. Dynamics and ecological significance of daily internal load of phosphorus in shallow Lake Balaton; Hungary. Freshwater Biology 49: 232–252.

    Article  Google Scholar 

  • Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G. Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hyrobiologia 581: 305–318.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, S. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Søndergaard & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. In van Donk, E., M. Boersma & P. Spaak (eds), Recent Developments in Fundamental and Applied Plankton Research. Hydrobiologia, Vol. 491.: 321–330.

  • Juggins, S., 2009. rioja: Analysis of Quaternary Science Data, R package version 0.5-6 (http://cran.r-project.org/package=rioja).

  • Kerfoot, W. C., 1995. Bosmina remains in Lake Washington sediments: Qualitative heterogeneity of bay environments and quantitative correspondence to production. Limnology and Oceanography 40: 211–225.

    Article  Google Scholar 

  • Kenney, W. F., M. N. Waters, C. L. Schelske & M. Brenner, 2002. Sediment records of phosphorus-driven shifts to phytoplankton dominance in shallow Florida lakes. Journal of Paleolimnology 27: 367–377.

    Article  Google Scholar 

  • Korhola, A. & M. Rautio, 2001. Cladocera and other Branchiopod Crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4. Zoological Indicators. Kluwer Academic Publishers, Dordrecht: 5–41.

  • Korhola, A., S. Sorvari, M. Rautio, P. G. Appleby, J. A. Dearing, Y. Hu, N. Rose, A. Lami & N. G. Cameron, 2002. Multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajärvi in Finnish Lapland. Journal of Paleolimnology 28: 59–77.

    Article  Google Scholar 

  • Korponai, J., M. Braun, K. Buczkó, I. Gyulai, L. Forró, J. Nédli & I. Papp, 2010. Transition from shallow lake to a wetland: a multi-proxy case study in Zalavári Pond, Lake Balaton, Hungary. Hydrobiologia 641: 225–244.

    Article  CAS  Google Scholar 

  • Láng, I., 1986. Impact on Policymaking: Background to a Government Decision. In Somlyódy, L. & L. G. van Straten (eds), Modeling and Managing Shallow Lake Eutrophication. Springer, Berlin: 110–122.

  • Manca, M., B. Torretta, P. Comoli, S. L. Amsinck & E. Jeppesen, 2007. Major changes in trophic dynamics in large, deep sup-alpine Lake Maggiore from 1940 s to 2002: a high resolution comparative palaeo-neolimnological study. Freshwater Biology 52: 2256–2269.

    Article  CAS  Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernandez-Alaez, M. Fernandez-Alaez, R. J. M. Franken, F. Garcia-Criado, E. M. Gross, M. Gyllstrom, L. A. Hansson, K. Irvine, A. Jarvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Kunnap, A. Laas, E. Lille, B. Lorens, H. Luup, M. R. Miracle, P. Noges, T. Noges, M. Nykanen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujoe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation – Marine and Freshwater Ecosystems 13: 507–549.

  • Nédli, J., L. Forró, J. Korponai & L. G. Tóth, 2005. Daphnia species (Crustacea, Cladocera) and the genetic characteristics of their populations based on allozyme studies in Lake Balaton, Hungary. Opuscula Zoologica Instituti Zoosystematici et Oecologici Universitatis Budapestiensis 36: 79–84.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2010. vegan: Community Ecology Package. R package version 1.17-4 (http://CRAN.R-project.org/package=vegan).

  • Padisák, J., 1999. A Balaton természettörténete. (Natural history of the lake Balaton) História 21 (5–6): 50–53 (in Hungarian).

  • Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506–509: 1–11.

    Article  Google Scholar 

  • Parpala, L., L. G-Tóth, V. Zinevici, P. Németh & K. Szalontai, 2003. Structure and production of metazoan plankton in Lake Balaton (Hungary) in summer. Hydrobiologia 506: 347–351.

    Article  Google Scholar 

  • Rawcliffe, R., C. D. Sayer, G. Woodward, J. Grey, T. A. Davidson & J. I. Jones, 2010. Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs. Freshwater Biology 55: 600–613.

    Article  Google Scholar 

  • R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (http://www.R-project.org).

  • Robertson, A. L., 1990. The population dynamics of Chydoridae and Macrothricidae (Cladocera: Crustacea) from the River Thames. U.K. Freshwater Biology 24: 375–389.

    Article  Google Scholar 

  • Sanger, J. E. & E. Gorham, 1972. Stratigraphy of fossil pigments as a guide to the postglacial history of Kishner Marsh, Minnesota. Limnology and Oceonagraphy 17: 840–854.

    Article  Google Scholar 

  • Sebestyén, O., 1934. Appearance and rapid increase of Dreissena polymorpha Pall and Corophium curvispinum G. O. Sars forma devium Wundsch in Lake Balaton. Archiva Biologica Hungarica 7: 190–204.

    Google Scholar 

  • Sebestyén, O., 1965. Kladocera tanulmányok a Balatonon III Tótörténeti előtanulmányok I–Cladocera studies in Lake Balaton III Preliminary studies for lake history investigations. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 36: 229–256.

    Google Scholar 

  • Sebestyén, O., 1969. Kladocera tanulmányok a Balatonon IV Negyedkori maradványok a Balaton üledékében I–Cladocera studies in Lake Balaton IV Quaternary remains in the sediment of Lake Balaton I. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 36: 229–256.

    Google Scholar 

  • Sebestyén, O., 1970. Kladocera tanulmányok a Balatonon IV Negyedkori maradványok a Balaton üledékében II–Cladocera studies in Lake Balaton IV Quaternary remains in the sediment of Lake Balaton II. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 37: 247–279.

    Google Scholar 

  • Sebestyén, O., 1971. Kladocera tanulmányok a Balatonon IV Negyedkori maradványok a Balaton üledékében III–Cladocera studies in Lake Balaton IV Quaternary remains in the sediment of Lake Balaton III. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 38: 227–268.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie.

    Google Scholar 

  • Tátrai, I., Á. György, V. Józsa & I. Szabó, 2005. A busa biológiai szerepének és hatásának vizsgálata a Balatonban. (The role and the effect of bighead carp in Lake Balaton) In Mahunka, S. & J. Banczerowski (eds), A Balaton kutatásának 2004. évi eredményei. Magyar Tudományos Akadémia, Budapest: 93–101 (in Hungarian).

  • Tullner, T. & T. Cserny, 2003. New aspects of lake-level changes: Lake Balaton, Hungary. Acta Geologica Hungarica 46(2): 215–238.

    Article  Google Scholar 

  • Vallentyne, J. R., 1955. Sedimentary chlorophyll determination as a palaeobotanical method. Canadian Journal of Botany 33: 304–313.

    Article  CAS  Google Scholar 

  • Väliranta, M., S. Kultti, M. Nyman & K. Sarmaja-Korjonen, 2005. Holocene development of aquatic vegetation in shallow Lake Njargajavri, Finnish Lapland, with evidence of water-level fluctuations and drying. Journal of Paleolimnology 34: 203–215.

    Article  Google Scholar 

  • Virág, Á., 1998. The Past and the Present of Lake Balaton. Egri Nyomda Kft.

  • Wetzel, R. G., 1970. Recent and postglacial production rates of a marl lake. Limnology and Oceanography 15: 491–503.

    Article  CAS  Google Scholar 

  • Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal abundance and pattern of Chydorid, Cladocera in mud and vegetative habitats. Ecology 59: 1177–1188.

    Article  Google Scholar 

  • Whitmore, T. J., M. Brenner & C. L. Schelske, 1996. Highly variable sediment distribution in shallow, wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. Journal of Paleolimnology 15: 207–221.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. László Forró (Hungarian Natural History Museum) for his valuable pieces of advice, and Richard William McIntosh (University of Debrecen) for grammatical review. The authors thank their colleagues from Laboratory of West-Transdanubian District Water Authority for their help with data collection and collaboration. This study was financially supported by Hungarian National Science Foundation, OTKA-T 049098 and Hungarian National Research and Development Program BALÖKO 3B022/04, TÁMOP 4.2.2-08/1-2008-0020, TÁMOP 4.2.1/B-09/1/KONV-2010-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Korponai.

Additional information

Guest editors: H. Eggermont & K. Martens / Cladocera as indicators of environmental change

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korponai, J., Varga, K.A., Lengré, T. et al. Paleolimnological reconstruction of the trophic state in Lake Balaton (Hungary) using Cladocera remains. Hydrobiologia 676, 237–248 (2011). https://doi.org/10.1007/s10750-011-0898-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0898-7

Keywords

Navigation