Skip to main content

Advertisement

Log in

Differential sensitivity of planktonic trophic levels to extreme summer temperatures in boreal lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The stress–size hypothesis predicts that smaller organisms will be less sensitive to stress. Consequently, climate warming is expected to favour smaller taxa from lower trophic levels and smaller individuals within populations. To test these hypotheses, we surveyed zooplankton communities in 20 boreal lakes in Killarney Provincial Park, Canada during 2005 (an anomalously warm summer) and 2006 (a normal summer). Higher trophic levels had larger responses to warm temperatures supporting the stress–size hypothesis; however, rather than imposing negative effects, higher density and biomass were observed under warmer temperatures. As a result, larger taxa from higher trophic levels were disproportionately favoured with warming, precluding an expected shift towards smaller species. Proportionately greater increases in metabolic rates of larger organisms or altered biotic interactions (e.g. predation and competition) are possible explanations for shifts in biomass distribution. Warmer temperatures also favoured smaller individuals of the two most common species, in agreement with the stress–size hypothesis. Despite this, these populations had higher biomass in the warm summer. Therefore, reduced adult survivorship may have triggered these species to invest in reproduction over growth. Hence, warmer epilimnions, higher zooplankton biomass and smaller individuals within zooplankton populations may function as sensitive indicators of climate warming in boreal lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.

    Article  PubMed  Google Scholar 

  • Anneville, O., J. C. Molinero, S. Souissi & D. Gerdeaux, 2010. Seasonal, interannual variability of cladoceran communities in two peri-alpine lakes: uncoupled response to the 2003 heat wave. Journal of Plankton Research 32: 913–925.

    Article  Google Scholar 

  • Arnott, S. E., N. Yan, W. Keller & K. Nicholls, 2001. The influence of drought-induced acidification on the recovery of plankton in Swan Lake (Canada). Ecological Applications 11: 747–763.

    Article  Google Scholar 

  • Barbiero, R. P. & C. M. McNair, 1996. The dynamics of vertical chlorophyll distribution in an oligomesotrophic lake. Journal of Plankton Research 18: 225–237.

    Article  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Barton, B. T., A. P. Beckerman & O. J. Schmitz, 2009. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90: 2346–2351.

    Article  PubMed  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Burns, C. W., 1969. Relation between filtering rate, temperature, and body size in four species of Daphnia. Limnology and Oceanography 14: 693.

    Article  Google Scholar 

  • Carter, J. C. H., M. J. Dadswell, J. C. Roff & W. G. Sprules, 1980. Distribution and zoogeography of planktonic crustaceans and dipterans in glaciated eastern North America. Canadian Journal of Zoology 58: 1355–1387.

    Article  Google Scholar 

  • Cattaneo, A., A. Asioli, P. Comoli & M. Manca, 1998. Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnology and Oceanography 43: 1938–1943.

    Google Scholar 

  • Chen, C. Y. & C. L. Folt, 2002. Ecophysiological responses to warming events by two sympatric zooplankton species. Journal of Plankton Research 24: 579–589.

    Article  Google Scholar 

  • Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from length–weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380–1390.

    Article  Google Scholar 

  • Dai, A., K. E. Trenberth & T. T. Qian, 2004. A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5: 1117–1130.

    Article  Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12788–12793.

    Article  PubMed  CAS  Google Scholar 

  • Francis, T. B., D. E. Schindler, G. W. Holtgrieve, E. R. Larson, M. D. Scheuerell, B. X. Semmens & E. J. Ward, 2011. Habitat structure determines resource use by zooplankton in temperate lakes. Ecology Letters 14: 364–372.

    Article  PubMed  Google Scholar 

  • Gerten, D. & R. Adrian, 2000. Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnology and Oceanography 45: 1058–1066.

    Article  Google Scholar 

  • Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist & R. D. Holt, 2010. A framework for community interactions under climate change. Trends in Ecology & Evolution 25: 325–331.

    Article  Google Scholar 

  • Gunn, J. M., E. Snucins, N. D. Yan & M. T. Arts, 2001. Use of water clarity to monitor the effects of climate change and other stressors on oligotrophic lakes. Environmental Monitoring and Assessment 67: 69–88.

    Article  PubMed  CAS  Google Scholar 

  • Hampton, S. E., L. R. Izmest’eva, M. V. Moore, S. L. Katz, B. Dennis & E. A. Silow, 2008. Sixty years of environmental change in the world’s largest freshwater lake – Lake Baikal, Siberia. Global Change Biology 14: 1947–1958.

    Article  Google Scholar 

  • Herzig, A., 1983. The ecological significance of the relationship between temperature and duration of embryonic development in plankton freshwater copepod. Hydrobiologia 100: 65–91.

    Article  Google Scholar 

  • Hoekman, D., 2010. Turning up the heat: temperature influences the relative importance of top-down and bottom-up effects. Ecology 91: 2819–2825.

    Article  PubMed  Google Scholar 

  • Hogsden, K. L., M. A. Xenopoulos & J. A. Rusak, 2009. Asymmetrical food web responses in trophic-level richness, biomass, and function following lake acidification. Aquatic Ecology 43: 591–606.

    Article  CAS  Google Scholar 

  • Holzapfel, A. M. & R. D. Vinebrooke, 2005. Environmental warming increases invasion potential of alpine lake communities by imported species. Global Change Biology 11: 2009–2015.

    Google Scholar 

  • Huber, V., R. Adrian & D. Gerten, 2010. A matter of timing: heat wave impact on crustacean zooplankton. Freshwater Biology 55: 1769–1779.

    Google Scholar 

  • Keller, W., 2007. Implications of climate warming for Boreal Shield lakes: a review and synthesis. Environmental Reviews 15: 99–112.

    Article  CAS  Google Scholar 

  • Lawrence, S. G., D. F. Malley, W. J. Findlay, M. A. Maclver & I. L. Delbaere, 1987. Method for estimating dry-weight of freshwater planktonic crustaceans from measures of length and shape. Canadian Journal of Fisheries and Aquatic Sciences 44: 264–274.

    Article  Google Scholar 

  • Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. Journal of Paleolimnology 19: 181–198.

    Article  Google Scholar 

  • Magnuson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quinn, 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield Region. Hydrological Processes 11: 825–871.

    Article  Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific, Oxford, UK: 228–265.

    Google Scholar 

  • M.O.E., 2003. Approved routine methods reports. Ontario Ministry of the Environment Laboratory Services Branch, Quality Management Unit. E3042, 3422, 3249, 3036, 3147, 3424, 3024, 3386. Etobicoke, ON.

  • Montoya, J. M. & D. Raffaelli, 2010. The effects of climate change on biotic interactions and ecosystem services – Preface. Philosophical Transactions of the Royal Society B – Biological Sciences 365: 2011–2150.

    Article  Google Scholar 

  • Moore, M. V., C. L. Folt & R. S. Stemberger, 1996. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv Fur Hydrobiologie 135: 289–319.

    Google Scholar 

  • Mortsch, L. D. & F. H. Quinn, 1996. Climate change scenarios for Great Lakes Basin ecosystem studies. Limnology and Oceanography 41: 903–911.

    Article  CAS  Google Scholar 

  • Mourelatos, S. & G. Lacroix, 1990. Insitu filtering rates of Cladocera – effect of body length, temperature, and food concentration. Limnology and Oceanography 35: 1101–1111.

    Article  Google Scholar 

  • Odum, E. P., 1985. Trends expected in stressed ecosystems. Bioscience 35: 419–422.

    Article  Google Scholar 

  • Olden, J. D., O. P. Jensen & M. J. Vander Zanden, 2006. Implications of long-term dynamics of fish and zooplankton communities for among-lake comparisons. Canadian Journal of Fisheries and Aquatic Sciences 63: 1812–1821.

    Article  Google Scholar 

  • Petchey, O. L., P. T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72.

    Article  CAS  Google Scholar 

  • Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 41: 1004–1017.

    Article  CAS  Google Scholar 

  • Shurin, J. B., K. Cottenie & H. Hillebrand, 2009. Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159: 151–159.

    Article  PubMed  Google Scholar 

  • Snucins, E. & J. Gunn, 2000. Interannual variation in the thermal structure of clear and colored lakes. Limnology and Oceanography 45: 1639–1646.

    Article  Google Scholar 

  • Stibor, H., 1992. Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92: 162–165.

    Article  Google Scholar 

  • Strecker, A. L., T. P. Cobb & R. D. Vinebrooke, 2004. Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnology and Oceanography 49: 1182–1190.

    Article  CAS  Google Scholar 

  • Suttle, K. B., M. A. Thomsen & M. E. Power, 2007. Species interactions reverse grassland responses to changing climate. Science 315: 640–642.

    Article  PubMed  CAS  Google Scholar 

  • Vinebrooke, R. D., D. W. Schindler, D. L. Findlay, M. A. Turner, M. Paterson & K. H. Milis, 2003. Trophic dependence of ecosystem resistance and species compensation in experimentally acidified lake 302S (Canada). Ecosystems 6: 101–113.

    Article  Google Scholar 

  • Voigt, W., J. Perner, A. J. Davis, T. Eggers, J. Schumacher, R. Bahrmann, B. Fabian, W. Heinrich, G. Kohler, D. Lichter, R. Marstaller & F. W. Sander, 2003. Trophic levels are differentially sensitive to climate. Ecology 84: 2444–2453.

    Article  Google Scholar 

  • Voigt, W., J. Perner & T. H. Jones, 2007. Using functional groups to investigate community response to environmental changes: two grassland case studies. Global Change Biology 13: 1710–1721.

    Article  Google Scholar 

  • Walther, G. R., 2007. Tackling ecological complexity in climate impact research. Science 315: 606–607.

    Article  PubMed  CAS  Google Scholar 

  • Walther, G. R., 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B-Biological Sciences 365: 2019–2024.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic system. Ecology 85: 3178–3178.

    Article  Google Scholar 

  • Woodward, G., B. Ebenman, M. Emmerson, J. M. Montoya, J. M. Olesen, A. Valido & P. H. Warren, 2005. Body size in ecological networks. Trends in Ecology & Evolution 20: 402–409.

    Article  Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B – Biological Sciences 365: 2093–2106.

    Article  Google Scholar 

  • Yan, N. D. & G. L. Mackie, 1987. Improved estimation of the dry weight of Holopedium gibberum (Crustacea, Cladocera) using clutch size, a body-fat index, and lake water total phosphorus concentration. Canadian Journal of Fisheries and Aquatic Sciences 44: 382–389.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank J. Shead, L. Hatton, D. Hasek, P. Olmsted, A. Derry, L. Duke, L. DoHarris, T. Whitman, and J. Pokorny for their assistance in the field. We also thank two anonymous reviewers for their insightful comments on an earlier version of this article. Logistical support was provided by Killarney Provincial Park and the Cooperative Freshwater Ecology Unit. Water chemistry data were provided by the Ontario Ministry of the Environment. Financial support was provided by the Ontario Ministry of the Environment, the Natural Sciences and Engineering Research Council of Canada, and Friends of Killarney Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan M. MacLennan.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLennan, M.M., Arnott, S.E. & Strecker, A.L. Differential sensitivity of planktonic trophic levels to extreme summer temperatures in boreal lakes. Hydrobiologia 680, 11–23 (2012). https://doi.org/10.1007/s10750-011-0896-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0896-9

Keywords

Navigation