Skip to main content
Log in

Comparison of Cladocera-based water-depth reconstruction against other types of proxy data in Finnish Lapland

  • CLADOCERA AS INDICATORS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake depth is an important limnological attribute defining the structure and function of freshwater aquatic ecosystems. Lake levels have fluctuated and lake depths changed through the Holocene reflecting regional climate variations and sediment accumulation. Cladoceran remains preserved in sediments have been widely used for qualitative (P/L ratio) and quantitative (inference models) lake-depth reconstructions. In addition to estimations of prediction errors for performance power of modern data sets, it is important also to evaluate the reliability of reconstructed environmental values and to ensure that they are ecologically and paleoclimatically meaningful. In this study, we reconstructed the Holocene lake-depth history of a northern boreal lake using the Cladocera P/L ratio and a Cladocera—lake-depth inference model. These results were evaluated by comparison with reconstructions based on other proxies (aquatic macrofossils, sediment composition and sedimentation pattern) derived from three radiocarbon-dated sediment cores from the same lake. Whilst the reconstructions based on Cladocera and on the combination of other proxies yielded similar long-term trends, the absolute water depth values derived from the quantitative cladoceran model deviated from what was indicated by the other proxies. Therefore, we strongly recommend that also other, independent methods should be used simultaneously when reconstructing past water depths using Cladocera remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott, M. B., B. P. Finney, M. E. Edwards & K. R. Kelts, 2000. Lake-level reconstruction and paleohydrology of Birch Lake, central Alaska, based on seismic reflection profiles and core transects. Quaternary Research 53: 154–166.

    Article  Google Scholar 

  • Alhonen, P., 1970. On the significance of the planktonic/littoral ratio in the cladoceran stratigraphy of lake sediments. Commentationes Biologicae 35: 1–9.

    Google Scholar 

  • Almquist, H., A. C. Dieffenbacher-Krall, R. Flanagan-Brown & D. Sanger, 2001. The Holocene record of lake levels of Mansell Pond, central Maine, USA. The Holocene 11: 189–201.

    Article  Google Scholar 

  • Amsinck, S. L., A. Strzelczak, R. Bjerring, F. Landkildehus, T. L. Lauridsen, K. Christoffersen & E. Jeppesen, 2006. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes – evidence from contemporary data and sediments. Freshwater Biology 51: 2124–2142.

    Article  CAS  Google Scholar 

  • Barnekow, L., 2000. Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, northern Sweden. Journal of Paleolimnology 23: 399–420.

    Article  Google Scholar 

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.

    Article  Google Scholar 

  • Bigler, C., O. Heiri, R. Krskova, A. Lotter & M. Sturm, 2006. Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquatic Sciences – Research Across Boundaries 68: 154–171.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Quaternary Research Association, Cambridge: 161–254.

    Google Scholar 

  • Birks, H. H., 2001. Plant macrofossils. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change using Lake Sediments. Kluwer Academic Publishers, Dordrecht: 49–74.

    Google Scholar 

  • Birks, H. J. B. & H. H. Birks, 1980. Quaternary Palaeoecology. Edward Arnold, London.

    Google Scholar 

  • Birks, H. J. B., O. Heiri, H. Seppä & A. E. Bjune, 2010. Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. The Open Ecology Journal 3: 68–110.

    Article  Google Scholar 

  • Bos, D., B. Cumming & J. Smol, 1999. Cladocera and Anostraca from the Interior Plateau of British Columbia, Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 392: 129–141.

    Article  CAS  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, T. A., C. D. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2010. The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshwater Biology 55: 546–564.

    Article  CAS  Google Scholar 

  • Digerfeldt, G., 1988. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjön, South Sweden. Boreas 17: 165–182.

    Article  Google Scholar 

  • Eronen, M., H. Hyvärinen & P. Zetterberg, 1999. Holocene humidity changes in northern Finnish Lapland inferred from lake sediments and submerged Scots pines dated by tree-rings. The Holocene 9: 569–580.

    Article  Google Scholar 

  • Frey, D. G., 1986. The non-cosmopolitanism of chydorid Cladocera: implications for biogeography and evolution. In Gore, R. H. & K. L. Heck (eds), Crustacean Biogeography. Balkema, Rotterdam: 237–356.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.

    Google Scholar 

  • Gąsiorowski, M. & H. Hercman, 2005. Recent sedimentation and eutrophication of Kruklin Lake after artificial drop in water-level in the middle of 19th century. Studia Quaternaria 22: 17–25.

    Google Scholar 

  • Håkanson, L., 2005. The importance of lake morphometry for the structure and function of lakes. International Review of Hydrobiology 90: 433–461.

    Article  Google Scholar 

  • Hämet-Ahti, L., J. Suominen, T. Ulvinen & P. Uotila, 1998. Retkeilykasvio. Forssan Kirjapaino Oy, Forssa, Finland.

  • Hann, B. J., 1989. Methods in quaternary ecology #6. Cladocera. Geoscience Canada 16: 17–26.

    Google Scholar 

  • Hann, B. J. & M. A. Turner, 1999. Exploitation by microcrustacea of a new littoral habitat in an acidified lake. Hydrobiologia 416: 65–75.

    Article  Google Scholar 

  • Hann, B. J. & B. G. Warner, 1987. Late Quaternary Cladocera from coastal British Columbia, Canada: a record of climatic or limnologic change? Archiv fur Hydrobiologie 110: 161–177.

    Google Scholar 

  • Hann, B. J., P. R. Leavitt & P. S. Chang, 1994. Cladocera community response to experimental eutrophication in Lake 227, Experimental Lakes Area, Ontario, as recorded in annually laminated sediments. Canadian Journal of Fisheries and Aquatic Sciences 51: 2312–2321.

    Article  Google Scholar 

  • Hannon, G. E. & M. Gaillard, 1997. The plant-macrofossil record of past lake-level changes. Journal of Paleolimnology 18: 15–28.

    Article  Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Article  Google Scholar 

  • Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 9: 55–62.

    Article  Google Scholar 

  • Hyvärinen, H. & P. Alhonen, 1994. Holocene lake-level changes in the Fennoscandian tree-line region, western Finnish Lapland: diatom and cladoceran evidence. The Holocene 4: 251–258.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342–343: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., K. Christoffersen, F. Landkildehus, T. Lauridsen, S. L. Amsinck, F. Riget & M. Søndergaard, 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Søndergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6: 313–325.

    Article  CAS  Google Scholar 

  • Kattel, G., R. Battarbee, A. Mackay & H. J. B. Birks, 2007. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology 38: 157–181.

    Article  Google Scholar 

  • Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.

    Article  Google Scholar 

  • Korhola, A. & J. Weckström, 2004. Paleolimnological studies in arctic Fennoscandia and the Kola Peninsula (Russia). In Pienitz, R., M. S. V. Douglas & J. P. Smol (eds), Long-Term Environmental Change in Arctic and Antarctic Lakes. Kluwer Academic Publishers, Dordrecht: 381–418.

    Chapter  Google Scholar 

  • Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.

    Article  Google Scholar 

  • Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera – lake depth transfer model. Journal of Paleolimnology 34: 175–190.

    Article  Google Scholar 

  • Lauridsen, T., E. Jeppesen, F. Landkildehus & M. Søndergaard, 2001. Horizontal distribution of cladocerans in arctic Greenland lakes – impact of macrophytes and fish. Hydrobiologia 442: 107–116.

    Article  Google Scholar 

  • Lotter, A. F. & S. Juggins, 1991. POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. INQUA-Subcommission for the Study of the Holocene Working Group on Data-Handling Methods, Newsletter 6: 4–6.

  • Mäkelä, E., 1998. The Holocene history of Betula at Lake Iilompolo, Inari Lapland, northeastern Finland. The Holocene 8: 55–67.

    Article  Google Scholar 

  • Nevalainen, L., T. P. Luoto & K. Sarmaja-Korjonen, 2008. Late-Holocene water-level changes in Lake Iso Lehmälampi, southern Finland, reflected in subfossil Cladocerans and Chironomids. Studia Quaternaria 25: 33–42.

    Google Scholar 

  • Nevalainen, L., K. Sarmaja-Korjonen & T. P. Luoto, 2011. Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quaternary Research (in press). doi:10.1016/j.yqres.2011.02.007.

  • Nykänen, M., K. Vakkilainen, M. Liukkonen & T. Kairesalo, 2009. Cladoceran remains in lake sediments: a comparison between plankton counts and sediment records. Journal of Paleolimnology 42: 551–570.

    Article  Google Scholar 

  • Punning, J., T. Koff, E. Kadastik & A. Mikomägi, 2005. Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, southeastern Estonia. Journal of Paleolimnology 34: 377–390.

    Article  Google Scholar 

  • Rautio, M., 1998. Community structure of crustacean zooplankton in subarctic ponds – effects of altitude and physical heterogeneity. Ecography 21: 327–335.

    Article  Google Scholar 

  • Rautio, M., S. Sorvari & A. Korhola, 2000. Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. Journal of Limnology 59(suppl. 1): 81–96.

    Google Scholar 

  • Reimer, P. J., M. G. Baillie, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. B. Ramsey, C. E. Buck, G. S. Burr, R. L. Edwards, M. Friedrich, P. M. Grootes, T. P. Guilderson, I. Hajdas, T. J. Heaton, A. G. Hogg, K. A. Hughen, K. F. Kaiser, B. Kromer, F. G. McCormac, S. W. Manning, R. W. Reimer, D. A. Richards, J. R. Southon, S. Talamo, C. S. Turney, J. van der Plicht & C. E. Weyhenmeyer, 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51: 1111–1150.

    CAS  Google Scholar 

  • Sarmaja-Korjonen, K., 2001. Correlation of fluctuations in cladoceran planktonic:littoral ratio between three cores from a small lake in southern Finland: Holocene water-level changes. The Holocene 11: 53–63.

    Article  Google Scholar 

  • Sarmaja-Korjonen, K. & H. Hyvärinen, 1999. Cladoceran and diatom stratigraphy of calcareous lake sediments from Kuusamo, NE Finland. Indications of Holocene lake-level changes. Fennia 177: 55–70.

    Google Scholar 

  • Sarmaja-Korjonen, K., M. Nyman, S. Kultti & M. Väliranta, 2006. Palaeolimnological development of Lake Njargajavri, northern Finnish Lapland, in a changing Holocene climate and environment. Journal of Paleolimnology 35: 65–81.

    Article  Google Scholar 

  • Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish–zooplankton–phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.

    Article  Google Scholar 

  • Seppä, H., 1996. Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia 174: 1–96.

    Google Scholar 

  • Seppä, H. & H. J. B. Birks, 2001. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11: 527–539.

    Article  Google Scholar 

  • Seppä, H. & D. Hammarlund, 2000. Pollen-stratigraphical evidence of Holocene hydrological change in northern Fennoscandia supported by independent isotopic data. Journal of Paleolimnology 24: 69–79.

    Article  Google Scholar 

  • Shuman, B., 2003. Controls on loss-on-ignition variation in cores from two shallow lakes in the northeastern United States. Journal of Paleolimnology 30: 371–385.

    Article  Google Scholar 

  • Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.

    Article  Google Scholar 

  • Ślusarczyk, M., 1997. Impact of fish predation on a small-bodied cladoceran: limitation or stimulation? Hydrobiologia 342–343: 215–221.

    Article  Google Scholar 

  • Stone, J. R. & S. C. Fritz, 2004. Three-dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic:benthic ratios. Limnology and Oceanography 49: 1540–1548.

    Article  CAS  Google Scholar 

  • Stuiver, M. & J. Reimer, 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–230.

    Google Scholar 

  • Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Swiecie.

    Google Scholar 

  • Telford, R. J., E. Heegaard & H. J. B. Birks, 2004. All age-depth models are wrong: but how badly? Quaternary Science Reviews 23: 1–5.

    Article  Google Scholar 

  • ter Braak, C. J. F. & S. Juggins, 1993. Weighted Averaging Partial Least Squares Regression (WA-PLS) – an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269: 485–502.

    Article  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.

    Article  Google Scholar 

  • Vadeboncoeur, Y., G. Peterson, M. J. Vander Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89: 2542–2552.

    Article  PubMed  Google Scholar 

  • Väliranta, M., 2006. Terrestrial plant macrofossil records; possible indicators of past lake-level fluctuations in north-eastern European Russia and Finnish Lapland? Acta Palaeobotanica 46: 235–243.

    Google Scholar 

  • Väliranta, M., S. Kultti, M. Nyman & K. Sarmaja-Korjonen, 2005. Holocene development of aquatic vegetation in a shallow Lake Njargajavri, Finnish Lapland with evidence of water level fluctuations and drying. Journal of Paleolimnology 34: 203–215.

    Article  Google Scholar 

  • Väliranta, M., J. Weckström, S. Siitonen, H. Seppä, J. Alkio, S. Juutinen & E. Tuittila, 2011. Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. Journal of Paleolimnology 45: 339–352.

    Article  Google Scholar 

  • Vance, R. E. & R. W. Mathewes, 1993. Deposition of modern pollen and plant macroremains in a hypersaline prairie lake basin. Canadian Journal of Botany 72: 539–548.

    Article  Google Scholar 

  • Walseng, B., D. O. Hessen, G. Halvorsen & A. K. Schartau, 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnology and Oceanography 51: 2600–2606.

    Article  Google Scholar 

  • Warner, B. G., R. J. Hebda & B. J. Hann, 1984. Postglacial paleoecological history of a cedar swamp, Manitoulin Island, Ontario, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 45: 301–345.

    Article  Google Scholar 

  • Weckström, J., A. Korhola, P. Erästö & L. Holmström, 2006. Temperature patterns over the past eight centuries in Northern Fennoscandia inferred from sedimentary diatoms. Quaternary Research 66: 78–86.

    Article  Google Scholar 

  • Wetzel, R., 2001. Limnology. Academic Press, San Diego.

    Google Scholar 

  • Whiteside, M. C., 1970. Danish Chydorid Cladocera: modern ecology and core studies. Ecological Monographs 40: 79–118.

    Article  Google Scholar 

  • Whiteside, M. C., 1974. Chydorid (Cladocera) ecology: seasonal patterns and abundance of populations in Elk Lake, Minnesota. Ecology 55: 538–550.

    Article  Google Scholar 

  • Whiteside, M. C., 1983. The mythical concept of eutrophication. Hydrobiologia 103: 107–111.

    Article  CAS  Google Scholar 

  • Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran paleoecological interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 405–412.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding to SS from the Arctic doctoral programme ARKTIS, Arctic Centre, University of Lapland. Funding for MV and JW was provided by the REBECCA-project, supported by the Helsinki University Environmental Research Centre (HERC) and the Academy of Finland (project number 123503). We warmly thank Virpi Kuutti for help with fieldwork and analyses. We are grateful to Ossi Aikio and many other local people for their helpful and cooperative attitude towards our fieldwork in Kaamanen and Kaarina Weckström for improving the language. We also acknowledge two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Siitonen.

Additional information

Guest editors: H. Eggermont & K. Martens / Cladocera as indicators of environmental change

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siitonen, S., Väliranta, M., Weckström, J. et al. Comparison of Cladocera-based water-depth reconstruction against other types of proxy data in Finnish Lapland. Hydrobiologia 676, 155–172 (2011). https://doi.org/10.1007/s10750-011-0885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0885-z

Keywords

Navigation