Hydrobiologia

, Volume 679, Issue 1, pp 97–117 | Cite as

Biodiversity loss in Appalachian headwater streams (Kentucky, USA): Plecoptera and Trichoptera communities

Primary Research Paper

Abstract

Government and academic studies indicate that many streams in the Appalachian Mountains have degraded biological communities stemming from a variety of regional landuses. Headwater stonefly (Plecoptera) and caddisfly (Trichoptera) assemblages were assessed between 1999 and 2004 in relation to pervasive landuse disturbances (coal mining and residential) in mountainous areas of eastern Kentucky, USA. Indicator metrics (richness, abundance, tolerance, and an observed/expected (O/E) null model) were compared among 94 sites with different land use pressures including least disturbed reference, residential, mining, and mixed mining and residential categories. Thirty-three stonefly species from 26 genera and 9 families were identified; Leuctra, Acroneuria, Haploperla, and Isoperla comprised the core genera that commonly decreased with disturbance. Caddisflies were represented by 48 species, 32 genera, and 14 families. Core caddisfly genera (Neophylax, Pycnopsyche, Rhyacophila, Lepidostoma, and Wormaldia) were extirpated from most disturbed sites. Species richness was significantly higher at reference sites and reference site mean tolerance value was lowest compared to all other categories; relative abundance of both orders was variable between disturbance groups. Non-metric multidimensional scaling (for riffle-dwelling stonefly and caddisfly genera) clustered reference sites distinctly from most other sites. The O/E index was highly correlated with individual habitat and chemical stressors (pH, conductivity) and on average, it estimated ~ 70% loss of common stoneflies and caddisflies across all disturbed landuse categories. Expected plecopteran and trichopteran communities were radically altered in streams draining mining and residential disturbance. Long-term impacts incurred by both landuses will continue to depress these vulnerable indigenous fauna.

Keywords

Benthic macroinvertebrates Bioassessment EPT Coal mining Residential development Conductivity 

Supplementary material

10750_2011_858_MOESM1_ESM.doc (18 kb)
Supplementary material (DOC 19 kb)

References

  1. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish, second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  2. Bernhardt, E. S. & M. A. Palmer, 2011. The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the central Appalachians. Annals of New York Academy of Science 1223: 39–57.CrossRefGoogle Scholar
  3. Blakely, T. J., J. S. Harding, A. R. Mcintosh & M. J. Winterbourn, 2006. Barriers to the recovery of aquatic insect communities in urban streams. Freshwater Biology 51: 1634–1645.CrossRefGoogle Scholar
  4. Blowes, D. W., C. J. Ptacek, J. L. Jambor & C. G. Weisener, 2003. The geochemistry of acid mine drainage. In Sherwood Lollar, B. (ed.), Treatise on Geochemistry. Vol. 9. Environmental Geochemistry. Elsevier, Toronto: 149–204.CrossRefGoogle Scholar
  5. Bonada, N., C. Zamora-Munoz, M. Rieradevall & N. Prat, 2004. Ecological profiles of caddisfly larvae in Mediterranean streams: implications for bioassessment methods. Environmental Pollution 132: 509–521.PubMedCrossRefGoogle Scholar
  6. Braun, E. L., 1950. Deciduous Forests of North America. Hafner, New York, NY.Google Scholar
  7. Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities in southern Wisconsin. Ecological Monographs 27: 325–349.CrossRefGoogle Scholar
  8. Briers, R. A. & J. H. R. Gee, 2004. Riparian forestry management and adult stream insects. Hydrology and Earth System Sciences 8: 545–549.CrossRefGoogle Scholar
  9. Buchwalter, D. B., D. J. Cain, W. H. Clements & S. N. Luoma, 2007. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects. Environmental Science and Technology 41: 4821–4828.PubMedCrossRefGoogle Scholar
  10. Canton, S. P. & J. V. Ward, 1981. The aquatic insects, with emphasis on Trichoptera, of a Colorado stream affected by coal strip-mine drainage. Southwestern Naturalist 25: 453–460.CrossRefGoogle Scholar
  11. Chambers, D. B., & T. Messinger, 2000. Benthic invertebrate communities and their responses to selected environmental factors in the Kanawha River Basin, West Virginia, Virginia, and North Carolina. Water-resources investigations report 01-4021. US geological survey, Charleston, West Virgina.Google Scholar
  12. Clements, W. H., 1994. Benthic invertebrate community responses to heavy metals in the upper Arkansas River Basin, Colorado. Journal of the North American Benthological Society 19: 30–44.CrossRefGoogle Scholar
  13. Clements, W. H., 2004. Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community response. Ecological Applications 14: 954–967.CrossRefGoogle Scholar
  14. Clements, W. H., D. S. Cherry & J. H. Van Hassel, 1992. Assessment of the impact of heavy metals on benthic communities at the Clinch River (Virginia): evaluation of an index of community sensitivity. Canadian Journal of Fisheries and Aquatic Sciences 49: 169–1686.CrossRefGoogle Scholar
  15. Collier, K. J. & B. J. Smith, 1998. Dispersal of adult caddisflies (Trichoptera) into forests alongside three New Zealand streams. Hydrobiologia 361: 53–65.CrossRefGoogle Scholar
  16. Conley, J. M., D. H. Funk & D. B. Buchwalter, 2009. Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environmental Science and Technology 43: 7952–7957.PubMedCrossRefGoogle Scholar
  17. Crichton, M. I. & D. B. Fisher, 1982. Records of caddisflies (Trichoptera) from Rothamsted light traps at field centres. Field Studies 5: 569–579.Google Scholar
  18. Cuffney, T. F., H. Zappia, E. M. P. Giddings & J. F. Coles, 2005. Effects of urbanization on benthic macroinvertebrate assemblages in contrasting environmental settings: Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. American Fisheries Society Symposium 47: 361–407.Google Scholar
  19. Davies, P. J., I. A. Wright, S. J. Findlay, O. J. Jonasson & S. Burgin, 2010. Impact of urban development on aquatic macroinvertebrates in south eastern Australia: degradation of in-stream habitats and comparison with non-urban streams. Aquatic Ecology 44: 685–700.CrossRefGoogle Scholar
  20. deMoor, F. C. & V. D. Ivanov, 2007. Global diversity of caddisflies (Trichoptera: Insecta) in freshwater. Hydrobiologia 595: 393–407.Google Scholar
  21. DeWalt, R. E., C. Favre & D. W. Webb, 2005. Just how imperiled are aquatic insects? A case study of stoneflies (Plecoptera) in Illinois. Annals Entomological Society of America 98: 941–950.CrossRefGoogle Scholar
  22. Diamond, J. M., D. W. Bressler & V. B. Serveiss, 2002. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell River watershed, USA. Environmental Toxicology and Chemistry 21: 1147–1155.PubMedCrossRefGoogle Scholar
  23. Dittman, E. K. & D. B. Buchwalter, 2010. Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn(II) thiol scavenging. Environmental Science and Technology 44: 9182–9188.PubMedCrossRefGoogle Scholar
  24. Fernández-Aláez, C., J. de Soto, M. Fernández-Aláez & F. García-Criado, 2002. Spatial structure of the caddisfly (Insecta, Trichoptera) communities in a river basin in NW Spain affected by coal mining. Hydrobiologia 487: 193–205.CrossRefGoogle Scholar
  25. Fochetti, R. & J. M. T. de Figueroa, 2008. Global diversity of stoneflies (Plecoptera: Insecta) in freshwater. Hydrobiologia 595: 365–377.Google Scholar
  26. García-Criado, F., A. Tomé, F. J. Vega & C. Antolín, 1999. Performance of some diversity and biotic indices in rivers affected by coal mining in northwestern Spain. Hydrobiologia 394: 209–217.CrossRefGoogle Scholar
  27. Griffith, M. B., E. M. Barrows & S. A. Perry, 1998. Lateral dispersal of adult aquatic insects (Plecoptera, Trichoptera) following emergence from headwater streams in forested Appalachian catchments. Annals of the Entomological Society of America 91: 195–201.Google Scholar
  28. Haefner, J. D. & J. B. Wallace, 1981. Shifts in aquatic insect populations in a first-order Appalachian stream following a decade of old field succession. Canadian Journal of Fisheries and Aquatic Science 38: 353–359.CrossRefGoogle Scholar
  29. Harding, J. S., J. M. Quinn & C. W. Hickey, 2000. Effects of mining and production forestry. In Collier, K. J. & M. J. Winterbourn (eds), New Zealand Stream Invertebrates: Ecology and Implications for Management. New Zealand Limnological Society, Christchurch: 230–259.Google Scholar
  30. Hartman, K. J., M. D. Kaller, J. W. Howell & J. A. Sweka, 2005. How much do valley fills influence headwater streams? Hydrobiologia 532: 91–102.CrossRefGoogle Scholar
  31. Heino, J., J. T. Muotka, R. Paavola & L. Paasivirta, 2003. Among-taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? Canadian Journal of Fisheries and Aquatic Sciences 60: 1039–1049.CrossRefGoogle Scholar
  32. Howard, H. S., B. Berrang, M. Flexner, G. Pond & S. Call, 2001. Kentucky mountaintop mining benthic macroinvertebrate survey. Appendix in Mountaintop mining/valley fills in Appalachia. Final programmatic environmental impact statement. Region 3, US Environmental Protection Agency, Philadelphia, Pennsylvania [available on internet at http://www.epa.gov/region3/mtntop/pdf/Appendices/Appendix%20D%20Aquatic/Kentucky%20Macroinvertebrate%20Study/report.pdf].
  33. Hughes, J. M., 2007. Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biology 52: 616–631.CrossRefGoogle Scholar
  34. Johnson, D. B., 2003. Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water Air Soil Pollution: Focus 3: 47–66.CrossRefGoogle Scholar
  35. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters. Island Press, Washington, DC.Google Scholar
  36. Kreutzweiser, D. P., S. S. Capell & K. P. Good, 2005. Macroinvertebrate community response to selection logging and upland areas of headwater catchments in a northern hardwood forest. Journal of the North American Benthological Society 24: 208–222.CrossRefGoogle Scholar
  37. KYDEP (Kentucky Department for Environmental Protection), 2007. Kentucky administrative regulations, 401 KAR 5:031 Section 4. Kentucky Department for Environmental Protection, Frankfort, Kentucky [available on internet at http://www.lrc.ky.gov/kar/401/010/031.htm].
  38. KYDEP (Kentucky Department for Environmental Protection), 2009. Laboratory procedures for macroinvertebrate processing, taxonomic identification, and reporting. Kentucky Energy and Environment Cabinet [available on internet at http://water.ky.gov/Documents/QA/Surface%20Water%20SOPs/BenthicMacroinvertebratesLabProcessingandIdentificationSOP.pdf].
  39. Langford, T. E. L., P. J. Shaw, A. J. D. Ferguson & S. R. Howard, 2009. Long-term recovery of macroinvertebrate biota in grossly polluted streams: re-colonisation as a constant to ecological quality. Ecological Indicators 9: 1064–1077.CrossRefGoogle Scholar
  40. Lemly, A. D., 1998. Bacterial growth on stream insects: potential for use in bioassessment. Journal of the North American Benthological Society 17(2): 228–238.CrossRefGoogle Scholar
  41. Lemly, A. D., 2000. Using bacterial growth on insects to assess nutrient impacts in streams. Environmental Monitoring and Assessment 63: 431–446.CrossRefGoogle Scholar
  42. Lenat, D. R. & V. H. Resh, 2001. Taxonomy and stream ecology—the benefits of genus- and species-level identifications. Journal of the North American Benthological Society 20: 287–298.CrossRefGoogle Scholar
  43. MacDonald, L. E. & D. Coe, 2007. Influence of headwater streams on downstream reaches in forested areas. Forest Science 53: 148–168.Google Scholar
  44. MacNeale, K. H., B. L. Peckarsky & G. E. Likens, 2005. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshwater Biology 50: 1117–1130.CrossRefGoogle Scholar
  45. Malmqvist, B. & P. Hoffsten, 1999. Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Resources 33: 2415–2423.Google Scholar
  46. Masters, Z., I. Petersen, A. G. Hildrew & S. J. Ormerod, 2006. Insect dispersal does not limit the biological recovery of streams from acidification. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 375–383.CrossRefGoogle Scholar
  47. McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.Google Scholar
  48. McCune, B. & M. J. Mefford, 1999. Multivariate Analysis of Ecological Data. Version 4.25. MjM Software, Gleneden Beach, OR.Google Scholar
  49. Merriam, E. R., J. T. Petty, G. T. Merovich, J. B. Fulton & M. P. Strager, 2011. Additive effects of mining and residential development on stream conditions in a central Appalachian watershed. Journal of the North American Benthological Society 30: 399–418.CrossRefGoogle Scholar
  50. Merricks, T. C., D. S. Cherry, C. E. Zipper, R. J. Currie & T. W. Valenti, 2007. Coal mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment 129: 359–378.PubMedCrossRefGoogle Scholar
  51. Merritt, R. W., K. W. Cummins & T. M. Burton, 1984. The role of aquatic insects in the processing and cycling of nutrients. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York, NY: 134–163.Google Scholar
  52. Meyer, J. L., D. L. Strayer, J. B. Wallace, S. L. Eggert, G. S. Helfman & N. E. Leonard, 2007. The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association 43: 86–103.CrossRefGoogle Scholar
  53. Moore, A. A. & M. A. Palmer, 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecological Applications 15: 1169–1177.CrossRefGoogle Scholar
  54. Morse, J. C., B. P. Stark, W. P. McCafferty & K. J. Tennessen, 1997. Southern Appalachian and other southeastern streams at risk: implications for mayflies, dragonflies, stoneflies, and caddisflies. In Benz, G. W. & D. E. Collins (eds), Aquatic Fauna in Peril: The Southeastern Perspective. Special Publication 1. Southeastern Aquatic Research Institute. Lenz Design and Communications, Decatur, GA: 17–42, 554.Google Scholar
  55. Palmer, M. A., J. D. Allan & C. A. Butman, 1996. Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends in Ecology & Evolution 11: 322–326.CrossRefGoogle Scholar
  56. Palmer, M. A., E. S. Bernhardt, W. H. Schlesinger, K. N. Eshleman, E. Foufoula-Georgiou, M. S. Hendryx, A. D. Lemly, G. E. Likens, O. L. Loucks, M. E. Power, P. S. White & P. R. Wilcock, 2010. Mountaintop mining consequences. Science 327: 149.CrossRefGoogle Scholar
  57. Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Sytematics 32: 333–365.CrossRefGoogle Scholar
  58. Petersen, I., Z. Masters, A. G. Hildrew & S. J. Omerod, 2004. Dispersal of adult aquatic insects in catchment of differing land use. Journal of Applied Ecology 41: 934–950.CrossRefGoogle Scholar
  59. Petty, J. T., J. B. Fulton, M. P. Strager, G. T. Merovich, J. M. Stiles & P. F. Ziemkiewicz, 2010. Landscape indicators and thresholds of stream ecological impairment in an intensively mined Appalachian watershed. Journal of the North American Benthological Society 29: 1292–1309.CrossRefGoogle Scholar
  60. Pond, G. J., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.CrossRefGoogle Scholar
  61. Pond, G. J. & S. E. McMurray, 2002. A macroinvertebrate bioassessment index for headwater streams in the eastern coalfield region, Kentucky. Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY [available on internet at http://water.ky.gov/Documents/QA/Surface%20Water%20SOPs/Historic%20SOPs/EKyMBI.pdf].
  62. Pond, G. J., S. C. Call, J. F. Brumley & M. C. Compton, 2003. The Kentucky macroinvertebrate bioassessment index: derivation of regional narrative criteria for headwater and wadeable streams. Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY [available on internet at http://water.ky.gov/Documents/QA/MBI/Statewide_MBI.pdf].
  63. Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using genus- and family-level bioassessment tools. Journal of the North American Benthological Society 27: 717–737.CrossRefGoogle Scholar
  64. Smith, R. F. & W. O. Lamp, 2008. Comparison of insect communities between adjacent headwater and main-stem streams in urban and rural watersheds. Journal of the North American Benthological Society 27: 161–175.CrossRefGoogle Scholar
  65. Smith, R. F., L. C. Alexander & W. O. Lamp, 2009. Dispersal by terrestrial stages of stream insects in urban watersheds: a synthesis of current knowledge. Journal of the North American Benthological Society. 28: 1022–1037.CrossRefGoogle Scholar
  66. Snyder, C. D. & Z. B. Johnson, 2006. Macroinvertebrate assemblage recovery following a catastrophic flood and debris flows in an Appalachian mountain stream. Journal of the North American Benthological Society 25: 825–840.CrossRefGoogle Scholar
  67. Stephan, C. E., D. I. Mount & D. J. Hanson, 1985. Guidelines for deriving numeric National Water Quality Criteria for the protection of aquatic organisms and their uses. PB85-227049. U.S. Environmental Protection Agency, Washington, DC [available on internet at http://www.epa.gov/waterscience/criteria/library/85guidelines.pdf].
  68. Stone, M. K. & J. B. Wallace, 1998. Long-term recovery of a mountain stream from clear-cut logging: the effects of forest succession on benthic community structure. Freshwater Biology 39: 151–169.CrossRefGoogle Scholar
  69. Strager, M. P., J. T. Petty, J. M. Strager & J. Barker-Fulton, 2009. A spatially explicit framework for quantifying downstream hydrologic conditions. Journal of Environmental Management 90: 1854–1861.PubMedCrossRefGoogle Scholar
  70. Tarter, D. C., D. L. Chaffee & S. A. Grubbs, 2006. Revised checklist of the stoneflies (Plecoptera) of Kentucky, U.S.A. Entomological News 117: 1–10.CrossRefGoogle Scholar
  71. Urban, M. C., D. K. Skelly, D. Burchted, W. Price & S. Lowry, 2006. Stream communities across a rural-urban landscape gradient. Diversity and Distributions 12: 337–350.CrossRefGoogle Scholar
  72. U.S. EPA (Environmental Protection Agency), 2005. Mountaintop Mining/Valley Fills in Appalachia, Final Programmatic Environmental Impact Statement [available on internet at http://www.epa.gov/region3/mtntop/index.htm].
  73. U.S. EPA (Environmental Protection Agency), 2011a. The effects of mountaintop mines and valley fills on aquatic ecosystems of the Central Appalachian coalfields. EPA/600/R-09/138F. Office of Research and Development, National Center for Environmental Assessment, Washington, DC [available on internet at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=225743].
  74. U.S. EPA (Environmental Protection Agency), 2011b. A field-based aquatic life benchmark for conductivity in Central Appalachian streams. EPA/600/R-10/023F. Office of Research and Development, National Center for Environmental Assessment, Washington, DC [available on internet at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=220171].
  75. Utz, R. M., R. H. Hilderbrand & D. M. Boward, 2009. Identifying regional differences in threshold responses of aquatic invertebrates to land cover gradients. Ecological Indicators 9: 556–567.CrossRefGoogle Scholar
  76. Van Sickle, J., C. P. Hawkins, D. P. Larsen & A. T. Herlihy, 2005. A null model for the expected macroinvertebrate assemblage in streams. Journal of the North American Benthological Society 24: 178–191.CrossRefGoogle Scholar
  77. Wallace, J. B., 1990. Recovery of lotic macroinvertebrate communities from disturbance. Environmental Management 14: 605–620.CrossRefGoogle Scholar
  78. Wallace, J. B., M. E. Gurtz & F. Smith-Cuffney, 1988. Long-term comparison of insect abundances in disturbed and undisturbed Appalachian headwater streams. Internationale Vereinigung fur theoretische und angewandte Limnologie. 23: 1224–1231.Google Scholar
  79. Webster, J. R., S. W. Golladay, E. F. Benfield, J. L. Meyer, W. T. Swank & J. B. Wallace, 1992. River conservation and management. In Boon, P. J., P. Calow & G. E. Petts (eds), Catchment Disturbance and Stream Response: An Overview of Stream Research at Coweeta Hydrologic Laboratory. Wiley, New York: 231–253.Google Scholar
  80. Weijters, M. J., J. H. Janse, R. Alemade & J. T. A. Verhoeven, 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 104–112.CrossRefGoogle Scholar
  81. Wellnitz, K. A., S. Grief & S. P. Sheldon, 1994. Response of macroinvertebrates to blooms of iron-depositing bacteria. Hydrobiologia 281: 1–17.CrossRefGoogle Scholar
  82. Wolkersdorfer, C. & R. J. Bowell, 2004. Contemporary reviews of mine water studies in Europe, part 1. Mine Water Environment 23: 162–182.CrossRefGoogle Scholar
  83. Woods, A. J., J. M. Omernik, W. H. Martin, G. J. Pond, W.M Andrews, S. M. Call, J. A. Comstock & D. D. Taylor, 2002. Ecoregions of Kentucky (2 sided color poster with map, descriptive text, summary tables, and photographs), Reston, VA, US Geological Survey (map scale 1:1,000,000).Google Scholar
  84. Wright, I. A. & S. Burgin, 2009. Comparison of sewage and coal-mine wastes on stream macroinvertebrates within an otherwise clean upland catchment, southeastern Australia. Water, Air, and Soil Pollution 204: 2227–2241.Google Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  1. 1.U.S. Environmental Protection Agency, Region 3WheelingUSA

Personalised recommendations