Skip to main content

Advertisement

Log in

Species–area relationships arise from interaction of habitat heterogeneity and species pool

  • HABITAT COMPLEXITY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Species–area relationships (SARs) represent a ubiquitous and useful empirical regularity characterizing biodiversity. The rate of species accumulation, captured by the value of the exponent, z, varies substantially and for many reasons. We hypothesized that one of the major contributors to this variation is heterogeneity and its change with scale. To test this hypothesis, we used an array of natural microcosms for which we had invertebrate species composition and physical properties of habitat. Using GIS and cluster analysis, we organized the species data into four sets: communities grouped by spatial proximity in the field, randomly, by similarity of their physical habitat and by dissimilarity of their physical habitat. These groupings produced varying levels of heterogeneity at different scales. We fitted species–area and species–volume relationships to the four groups of communities, and obtained z-values for each group or a portion of the group if the slope of the relationship varied. As predicted, we recovered a number of properties reported by others. More interestingly, we found that small- and large-scale habitat heterogeneity produced scale-dependent z-values while the random grouping of pool habitats produced z-values more robust across scales but also susceptible to initial values of habitat richness. Habitat area affected rate at which species accumulated much less than the mean degree of inter-habitat differences: increasing area that is heterogeneous at broader scales produces higher z-values than increasing an area that shows heterogeneity at small scale only. Our results, while from a microcosm system, rely on logic transferable to larger scale data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler, P. B. & W. K. Lauenroth, 2003. The power of time: spatiotemporal scaling of species diversity. Ecology Letters 6: 749–756.

    Article  Google Scholar 

  • Allen, A. P. & E. P. White, 2003. Effects of range size on species–area relationships. Evolutionary Ecology Research 5: 493–499.

    Google Scholar 

  • Cam, E., J. D. Nichols, J. E. Hines, J. R. Sauer, R. Alpizar-Jara & C. H. Flather, 2002. Disentangling sampling and ecological explanations underlying species–area relationships. Ecology 83: 1118–1130.

    Google Scholar 

  • Chust, G., J. L. Pretus, D. Ducrot, A. Bedos & L. Deharveng, 2003. Identification of landscape units from an insect perspective. Ecography 26: 257–268.

    Article  Google Scholar 

  • Condit, R., S. de Loo, J. V. LaFrankie, R. Sujumar, N. Monokaran, E. G. Leigh, R. P. Foster, P. S. Ashton & S. P. Hubbell, 1996. Species–area and species–individual relationships for tropical trees—a comparison of three 50 ha plots. Ecology 84: 549–562.

    Article  Google Scholar 

  • Connor, E. F. & E. D. McCoy, 1979. The statistics and biology of the species–area relationship. American Naturalist 113: 791–833.

    Article  Google Scholar 

  • Drakare, S., J. J. Lennon & H. Hillebrand, 2006. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecology Letters 9: 215–227.

    Article  PubMed  Google Scholar 

  • Dumbrell, A. J., E. J. Clark, G. A. Frost, T. E. Randell, J. W. Pitchford & J. K. Hill, 2008. Changes in species diversity following habitat disturbance are dependent on spatial scale: theoretical and empirical evidence. Journal of Applied Ecology 45: 1531–1539.

    Article  Google Scholar 

  • Durrett, R. & S. Levin, 1996. Spatial models for species–area curves. Journal of Theoretical Biology 179: 119–127.

    Article  Google Scholar 

  • Gentile, G. & R. Argano, 2005. Island biogeography of the Mediterranean Sea: the species–area relationship for terrestrial isopods. Journal of Biogeography 32: 1715–1726.

    Article  Google Scholar 

  • Gray, J. S., K. I. Ugland & J. Lambshead, 2004a. On species accumulation and species–area curves. Global Ecology and Biogeography 13: 567–568.

    Article  Google Scholar 

  • Gray, J. S., K. I. Ugland & J. Lambshead, 2004b. Species accumulation and species area curves—a comment on Scheiner (2003). Global Ecology and Biogeography 13: 473–476.

    Article  Google Scholar 

  • Harte, J., A. Kinzig & J. Green, 1999a. Self-similarity in the distribution and abundance of species. Science 294: 334–336.

    Article  Google Scholar 

  • Harte, J., S. McCarthy, K. Taylor, A. Kinzig & M. L. Fischer, 1999b. Estimating species–area relationships from plot to landscape scale using species spatial-turnover data. Oikos 86: 45–54.

    Article  Google Scholar 

  • He, F. & P. Legendre, 2002. Species diversity patterns derived from species–area models. Ecology 83: 1185–1198.

    Google Scholar 

  • Hortal, J., P. A. V. Borges & C. Gaspar, 2006. Evaluating the performance of species richness estimators: sensitivity to sample grain size. Journal of Animal Ecology 75: 274–287.

    Article  PubMed  Google Scholar 

  • Kolasa, J., J. A. Drake, G. R. Huxel & C. L. Hewitt, 1996. Hierarchy underlies patterns of variability in species inhabiting natural microcosms. Oikos 77: 259–266.

    Article  Google Scholar 

  • Kolasa, J., C. L. Hewitt & J. A. Drake, 1998. The Rapoport’s rule: an explanation or a byproduct of the latitudinal gradient in species richness? Biodiversity and Conservation 7: 1447–1455.

    Article  Google Scholar 

  • Lack, D., 1976. Island Biology: Illustrated by the Land Birds of Jamaica. University of California Press, Berkeley.

    Google Scholar 

  • Lomolino, M. V., 2000. Ecology’s most general, yet protean pattern: the species–area relationship. Journal of Biogeography 27: 17–26.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Manne, L. L., P. H. Williams, G. F. Midgley, W. Thuiller, T. Rebelo & L. Hannah, 2007. Spatial and temporal variation in species–area relationships in the Fynbos biological hotspot. Ecography 30: 852–861.

    Article  Google Scholar 

  • Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrast between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.

    Article  PubMed  Google Scholar 

  • Passy, S. I. & F. G. Blanchet, 2007. Algal communities in human-impacted stream ecosystems suffer beta-diversity decline. Diversity and Distributions 13: 670–679.

    Article  Google Scholar 

  • Romanuk, T. N. & J. Kolasa, 2001. Simplifying the complexity of temporal diversity dynamics: a differentiation approach. Ecoscience 8: 259–263.

    Google Scholar 

  • Romanuk, T. N. & J. Kolasa, 2002. Environmental variability alters the relationship between richness and variability of community abundances in aquatic rock pool microcosms. Ecoscience 9: 55–62.

    Google Scholar 

  • Scheiner, S. M., 2004. A mélange of curves—further dialogue about species–area relationships. Global Ecology and Biogeography 13: 479–484.

    Article  Google Scholar 

  • Scheiner, S. M., S. B. Cox, M. Willig, G. G. Mittelbach, C. Osenberg & M. Kaspari, 2000. Species richness, species–area curves and Simpson’s paradox. Evolutionary Ecology Research 2: 791–802.

    Google Scholar 

  • Schuh, M. & R. Diesel, 1995. Breeding in a rock pool: larvae of the semiterrestrial crab Armases [=Sesarma] miersii (Rathbun) (Decapoda: Grapsidae) develop in a highly variable environment. Journal of Experimental Marine Biology and Ecology 185: 109–129.

    Article  Google Scholar 

  • Shen, G. C., M. J. Yu, X. S. Hu, X. C. Mi, H. B. Ren, I. F. Sun & K. P. Ma, 2009. Species–area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology 90: 3033–3041.

    Article  PubMed  Google Scholar 

  • Srivastava, D. S., J. Kolasa, J. Bengtsson, A. Gonzalez, S. P. Lawler, T. E. Miller, P. Munguia, T. Romanuk, D. C. Schneider & M. K. Trzcinski, 2004. Are natural microcosms useful model systems for ecology? Trends in Ecology and Evolution 19: 379–384.

    Article  PubMed  Google Scholar 

  • Therriault, T. W. & J. Kolasa, 1999. Physical determinants of richness, diversity, evenness and abundance in natural aquatic microcosms. Hydrobiologia 412: 123–130.

    Article  CAS  Google Scholar 

  • Therriault, T. W. & J. Kolasa, 2000. Explicit links among physical stress, habitat heterogeneity and biodiversity. Oikos 89: 387–391.

    Article  Google Scholar 

  • Tjørve, E. & K. M. C. Tjørve, 2008. The species–area relationship, self-similarity, and the true meaning of the z-value. Ecology 89: 3528–3533.

    Article  PubMed  Google Scholar 

  • Triantis, K. A., M. Mylonas, M. D. Weiser, K. Lika & K. Vardinoyannis, 2005. Species richness, environmental heterogeneity and area: a case study based on land snails in Skyros archipelago (Aegean Sea, Greece). Journal of Biogeography 32: 1727–1735

    Google Scholar 

  • Triantis, K. A., K. Vardinoyannis, E. P. Tsolaki, I. Botsaris, K. Lika & M. Mylonas, 2006. Re-approaching the small island effect. Journal of Biogeography 33: 914–923.

    Article  Google Scholar 

  • Turner, K. A. & E. Tjørve, 2005. Scale-dependence in species–area relationships. Ecography 28: 1–10.

    Article  Google Scholar 

  • White, E. P., 2004. Two-phase species–time relationships in North American land birds. Ecology Letters 7: 329–336.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ermias Azeria for the constructive comments on the early versions of the manuscript, graduate and undergraduate students who helped collect and prepare data used in this article, Discovery Bay Marine Laboratory, Jamaica, for providing facilities and hospitality. Insightful comments from Kostas Triantis and an anonymous reviewer helped to improve the manuscript. This work was supported by Natural Sciences and Engineering Research Council of Canada with grants to LLM and JK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kolasa.

Additional information

Guest editors: K. E. Kovalenko & S. M. Thomaz / The importance of habitat complexity in waterscapes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolasa, J., Manne, L.L. & Pandit, S.N. Species–area relationships arise from interaction of habitat heterogeneity and species pool. Hydrobiologia 685, 135–144 (2012). https://doi.org/10.1007/s10750-011-0846-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0846-6

Keywords

Navigation