Skip to main content

Advertisement

Log in

Habitat complexity in aquatic systems: fractals and beyond

  • HABITAT COMPLEXITY
  • Opinion Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Despite the intensity with which ecological information involving habitat complexity has been amassed to date, much remains to be revealed for a comprehensive understanding of the mechanics and implications of the structural complexity of habitats and its influences on ecological communities. This review examines the multi-faceted characteristics of habitat complexity, focusing in particular on aquatic ecosystems. Habitat complexity in aquatic systems is characterised by at least five different traits of physical structure: (1) spatial scales, (2) diversity of complexity-generating physical (structural) elements, (3) spatial arrangement of elements, (4) sizes of elements, (5) abundance/density of elements. Of these five traits, the concept of fractal dimension fully encompasses only the last one; in this sense, habitat complexity is more complex than what fractal measures represent. It is therefore important to investigate exactly which traits of habitat structure are exerting influences on organisms/communities. We hypothesise that, where an entire range of possible fractal dimension D is considered, intermediate levels of D are most likely to be associated with the highest level of biodiversity, to which the body size spectra of assemblages would have a close bearing. In most aquatic ecosystems, broadly two-dimensional structures of bottom substrate at the scale of 1–10 m mean that the addition of vertical, three dimensional structures almost always implies an increase in both the ‘diversity’ and ‘abundance’ components of structural elements, resulting in more habitats being made available to organisms of different sizes and functional designs. The conservation and management of aquatic ecosystems would be facilitated by rigorous assessments of linkages between habitat complexity and aquatic communities, for which an integrative approach to habitat complexity seems to offer a useful and versatile framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adami, C., 2002. What is complexity? BioEssays 24: 1085–1094.

    Article  PubMed  Google Scholar 

  • Adami, C., 2004. Information theory in molecular biology. Physics of Life Reviews 1: 3–22.

    Article  Google Scholar 

  • Adami, C. & N. J. Cerf, 2000. Physical complexity of symbolic sequences. Physica D 137: 62–69.

    Article  Google Scholar 

  • Adami, C., C. Ofria & T. C. Collier, 2000. Evolution of biological complexity. Proceedings of the National Academy of Sciences USA 97: 4463–4468.

    Article  CAS  Google Scholar 

  • Arakaki, S. & M. Tokeshi, 2005. Microhabitat selection in intertidal gobiid fishes: species and size-associated interaction. Marine Biology Research 1: 39–47.

    Article  Google Scholar 

  • Arakaki, S. & M. Tokeshi, 2011. Analysis of spatial niche structure in coexisting tidepool fishes: null models based on multi-scale experiments. Journal of Animal Ecology 80: 137–147.

    Article  PubMed  Google Scholar 

  • Attrill, M. J., J. A. Strong & A. A. Rowden, 2000. Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23: 114–121.

    Article  Google Scholar 

  • August, P. V., 1983. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64: 1495–1507.

    Article  Google Scholar 

  • Bell, S. S. & L. D. Coen, 1982. Investigations on epibenthic meiofauna I. Abundances on and repopulation of the tube-caps of Diopatra cuprea (Polychaeta: Onuphidae) in a subtropical system. Marine Biology 67: 303–309.

    Article  Google Scholar 

  • Bell, S. S., E. D. McCoy & H. R. Mushinsky, 1991. Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London.

    Google Scholar 

  • Bohnsack, J. A., 1991. Habitat structure and the design of artificial reefs. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 412–426.

    Google Scholar 

  • Bonner, J. T., 1988. The Evolution of Complexity. Princeton University Press, Princeton.

    Google Scholar 

  • Boström, C., E. L. Jackson & C. A. Simenstad, 2006. Seagrass landscapes and their effects on associated fauna: a review. Estuarine, Coastal and Shelf Science 68: 383–403.

    Article  Google Scholar 

  • Bruno, J. F. & M. D. Bertness, 2001. Habitat modification and facilitation in benthic marine communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland, MA: 201–218.

    Google Scholar 

  • Carter, R. W. G., 1988. Coastal Environments. Academic Press, London.

    Google Scholar 

  • Commito, J. A. & B. R. Rusignuolo, 2000. Structural complexity in mussel beds: the fractal geometry of surface topography. Journal of Experimental Biology and Ecology 255: 133–152.

    Article  Google Scholar 

  • Denny, M. & D. Wethey, 2001. Physical processes that generate patterns in marine communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland, MA: 3–37.

    Google Scholar 

  • Donohue, I. & K. Irvine, 2003. Effects of sediment particle size composition on survivorship of benthic invertebrates from Lake Tanganyika, Africa. Archiv für Hydrobiologie 157: 131–144.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 1998. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs 68: 237–257.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.

    Article  Google Scholar 

  • Dudley, T. L., 1988. The role of plant complexity and epiphyton in colonization of macrophytes by stream insects. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 23: 1153–1158.

    Google Scholar 

  • Etter, R. J. & J. F. Grassle, 1992. Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360: 576–578.

    Article  Google Scholar 

  • Fortin, M.-J. & M. Dale, 2005. Spatial Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Frost, N. J., M. T. Burrows, M. P. Johnson, M. E. Hanley & S. J. Hawkins, 2005. Measuring surface complexity in ecological studies. Limnology and Oceanography: Methods 3: 203–210.

    Article  Google Scholar 

  • Gee, J. M. & R. M. Warwick, 1994. Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Marine Ecology Progress Series 103: 141–150.

    Article  Google Scholar 

  • Gell-Mann, M. & S. Lloyd, 1996. Information measures, effective complexity, and total information. Complexity 2: 44–52.

    Article  Google Scholar 

  • Gratwicke, B. & M. R. Speight, 2005. Effects of habitat complexity on Caribbean marine fish assemblages. Marine Ecology Progress Series 292: 301–310.

    Article  Google Scholar 

  • Halley, J. M., S. Hartley, A. S. Kallimanis, W. E. Kunin, J. J. Lennon & S. P. Sgardelis, 2004. Uses and abuses of fractal methodology in ecology. Ecology Letters 7: 254–271.

    Article  Google Scholar 

  • Hansen, J. P., J. Sagerman & S. A. Wilkström, 2010. Effects of plant morphology on small-scale distribution of invertebrates. Marine Biology 157: 2143–2155.

    Article  Google Scholar 

  • Heck, K. L. & R. J. Orth, 1980. Seagrass habitats: the roles of habitat complexity, competition, and predation in structuring associated fish and motile macroinvertebrate assemblages. In Kennedy, V. S. (ed.), Estuarine Perspectives. Academic Press, New York: 449–464.

    Google Scholar 

  • Heck, K. L. Jr., & G. S. Wetstone, 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4: 135–142.

    Article  Google Scholar 

  • Hills, J. M., J. C. Thomason & J. Muhl, 1999. Settlement of barnacle larvae is governed by Euclidean and not fractal surface characteristics. Functional Ecology 13: 868–875.

    Article  Google Scholar 

  • Hughes, R. N. & R. S. K. Barnes, 1999. An Introduction to Marine Ecology. Wiley-Blackwell, Oxford.

    Google Scholar 

  • Hurlbert, A. H., 2004. Species–energy relationships and habitat complexity in bird communities. Ecology Letters 7: 714–720.

    Article  Google Scholar 

  • Jeffries, M., 1993. Invertebrate colonization of artificial pondweeds of differing fractal dimension. Oikos 67: 142–148.

    Article  Google Scholar 

  • Jia, X. H., X. R. Li, J. G. Zhang & Z. S. Zhang, 2009. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus’ desert habitat. Environmental Geology 58: 953–962.

    Article  CAS  Google Scholar 

  • Johnson, M. P., N. J. Frost, M. W. J. Mosley, M. F. Roberts & S. J. Hawkins, 2003. The area-independent effects of habitat complexity on biodiversity vary between regions. Ecology Letters 6: 126–132.

    Article  Google Scholar 

  • Kawai, T. & M. Tokeshi, 2004. Variable modes of facilitation in the upper intertidal: goose barnacles and mussels. Marine Ecology Progress Series 272: 203–213.

    Article  Google Scholar 

  • Koivisto, M. E. & M. Westerbom, 2010. Habitat structure and complexity as determinants of biodiversity in blue mussel beds on sublittoral rocky shores. Marine Biology 157: 1463–1474.

    Article  Google Scholar 

  • Kostylev, V. E., J. Erlandsson, Y. M. Mak & G. A. Williams, 2005. The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecological Complexity 2: 272–286.

    Article  Google Scholar 

  • Kurimoto, M. & M. Tokeshi, 2010. Variation on a theme of herbivory: Corallina-hermit crab relationship on a temperate-subtropical rocky shore. Oikos 119: 1401–1408.

    Article  Google Scholar 

  • Lassau, S. A. & D. F. Hochuli, 2004. Effects of habitat complexity on ant assemblages. Ecography 27: 157–164.

    Article  Google Scholar 

  • Lassau, S. A., G. Cassis, P. K. J. Flemons, L. Wilkie & D. F. Hochuli, 2005. Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Ecography 28: 495–504.

    Article  Google Scholar 

  • Li, B. L., 2000. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecological Modelling 132: 33–50.

    Article  Google Scholar 

  • Lingo, M. E. & S. T. Szedlmayer, 2006. The influence of habitat complexity on reef fish communities in the northeastern Gulf of Mexico. Environmental Biology of Fishes 76: 71–80.

    Article  Google Scholar 

  • Londoño-Cruz, E. & M. Tokeshi, 2007. Testing scale-variance in species-area and abundance-area relationships in a local assemblage: an example from a subtropical boulder shore. Population Ecology 49: 275–285.

    Article  Google Scholar 

  • Macan, T. T. & A. Kitching, 1972. Some experiments with artificial substrata. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 18: 213–220.

    Google Scholar 

  • MacArthur, R. H. & J. W. MacArthur, 1961. On bird species diversity. Ecology 42: 594–598.

    Article  Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Wiley-Blackwell, Oxford.

    Google Scholar 

  • Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. W. H. Freeman, San Francisco.

    Google Scholar 

  • Mann, K. H. & J. R. N. Lazier, 1996. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Blackwell Science, Cambridge, MA.

    Google Scholar 

  • Marquet, P. A., S. A. Navarette & J. C. Castilla, 1990. Scaling population density to body size in rocky intertidal communities. Science 250: 1125–1127.

    Article  PubMed  CAS  Google Scholar 

  • McCoy, E. D. & S. S. Bell, 1991. Habitat structure: the evolution and diversification of a complex topic. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 3–27.

    Google Scholar 

  • McLachlan, A., 1996. Physical factors in benthic ecology: effects of changing sand particle size on beach fauna. Marine Ecology Progress Series 131: 205–217.

    Article  Google Scholar 

  • McShea, D. W., 1996. Metazoan complexity and evolution: is there a trend? Evolution 50: 477–492.

    Article  Google Scholar 

  • McShea, D. W., 2000. Functional complexity in organisms: parts as proxies. Biology and Philosophy 15: 641–668.

    Article  Google Scholar 

  • Moore, E. C. & K. A. Hovel, 2010. Relative influence of habitat complexity and proximity to patch edges on seagrass epifaunal communities. Oikos 119: 1299–1311.

    Article  Google Scholar 

  • Morse, D. R., J. H. Lawton, M. M. Dodson & M. H. Williamson, 1985. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314: 731–733.

    Article  Google Scholar 

  • Nohren, E. & E. Odelgard, 2010. Response of epibenthic faunal assemblages to varying vegetation structures and habitat patch size. Aquatic Biology 2: 139–148.

    Article  Google Scholar 

  • Nozawa, Y., M. Tokeshi & S. Nojima, 2008. Structure and dynamics of a high-latitude scleractinian coral community in Amakusa, southwestern Japan. Marine Ecology Progress Series 358: 151–160.

    Article  Google Scholar 

  • O’Connor, N. A., 1991. The effects of habitat complexity on the macroinvertebrate colonizing wood substrates in lowland stream. Oecologia 75: 132–140.

    Google Scholar 

  • Ota, N. & M. Tokeshi, 2000. A comparative study of feeding and growth in two coexisting species of carnivorous gastropods. Marine Biology 136: 101–114.

    Article  Google Scholar 

  • Palmer, M. W., 1992. The coexistence of species in fractal landscapes. American Naturalist 139: 375–397.

    Article  Google Scholar 

  • Paruntu, C. P. & M. Tokeshi, 2003. Variability in the reproductive characteristics of local populatiopns of an intertidal gastropod, Nerita japonica (Dunker). Benthos Research 58: 7–14.

    Google Scholar 

  • Rae, J. G., 2004. The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiologia 524: 115–124.

    Article  Google Scholar 

  • Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.

    Article  CAS  Google Scholar 

  • Rooke, J. B., 1986. Macroinvertebrates associated with macrophytes and plastic imitations in the Erasoma River, Ontario, Canada. Archiv für Hydrobiologie 106: 307–325.

    Google Scholar 

  • Safriel, U. N. & M. N. Ben-Eliahu, 1991. Habitat structure: the evolution and diversification of a complex topic. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 349–369.

    Google Scholar 

  • Schmid, P. E., 2000. Fractal properties of habitat and patch structure in benthic ecosystems. Advances in Ecological Research 30: 339–401.

    Article  Google Scholar 

  • Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2000. Relationship between population density and body size in stream communities. Science 289: 1157–1160.

    Article  Google Scholar 

  • Sebens, K. P., 1991. Habitat structure and community dynamics in marine benthic systems. In Bell, S. S., E. D. McCoy & H. R. Mushinsky (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London: 211–234.

    Google Scholar 

  • Shumway, C. A., H. A. Hofmann & A. P. Dobberfuhl, 2007. Quantifying habitat complexity in aquatic ecosystems. Freshwater Biology 52: 1065–1076.

    Article  Google Scholar 

  • Sozska, G. J., 1975. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekologica polska 23: 393–415.

    Google Scholar 

  • Sugihara, G. & R. M. May, 1990. Applications of fractals in ecology. Trends in Ecology & Evolution 5: 79–86.

    Article  CAS  Google Scholar 

  • Takemon, Y., 1996. Management of biodiversity in aquatic ecosystems: dynamic aspects of habitat complexity in stream ecosystems. In Abe, T., S. Levin & M. Higashi (eds), Ecological Perspective of Biodiversity. Springer-Verlag, New York: 259–275.

    Google Scholar 

  • Taniguchi, H. & M. Tokeshi, 2004. Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology 49: 1164–1178.

    Article  Google Scholar 

  • Taniguchi, H., S. Nakano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.

    Article  Google Scholar 

  • Thistle, M. E., D. S. Schneider, R. S. Gregory & N. J. Wells, 2010. Fractal measures of habitat structure: maximum densities of juvenile cod occur at intermediate eelgrass complexity. Marine Ecology Progress Series 405: 39–56.

    Article  Google Scholar 

  • Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Thrush, S. F., J. E. Hewitt, G. A. Funnell, V. J. Cummings, J. Ellis, D. Schultz, D. Talley & A. Norkko, 2001. Fishing disturbance and marine biodiversity: the role of habitat structure in simple soft-sediment systems. Marine Ecology Progress Series 223: 277–286.

    Article  Google Scholar 

  • Tokeshi, M., 1993. Species abundance patterns and community structure. Advances in Ecological Research 24: 111–186.

    Article  Google Scholar 

  • Tokeshi, M., 1995. Polychaete abundance and dispersion patterns: a non-trivial ‘infaunal’ assemblage on the Pacific South American rocky shore. Marine Ecology Progress Series 125: 137–147.

    Article  Google Scholar 

  • Tokeshi, M., 1999. Species Coexistence: Ecological and Evolutionary Perspectives. Blackwell Science, Oxford.

    Google Scholar 

  • Tokeshi, M. & L. C. V. Pinder, 1985. Microhabitats of stream invertebrates on two submersed macrophytes with contrasting leaf morphology. Holarctic Ecology 8: 313–319.

    Google Scholar 

  • Tokeshi, M. & L. Romero, 1995. Filling a gap: dynamics of space occupancy on a mussel-dominated subtropical rocky shore. Marine Ecology Progress Series 119: 167–176.

    Article  Google Scholar 

  • Tokeshi, M. & K. Tanaka, 2010. Dominance of tabular Acroporid species and the abundance of echinoid grazers in high-latitude coral assemblages of Amakusa, southwestern Japan. Galaxea 12: 87.

    Google Scholar 

  • Ward, R. & M. Robinson, 1999. Principles of Hydrology. McGraw-Hill, Maidenhead.

    Google Scholar 

  • Wilkström, S. A. & L. Kautsky, 2007. Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuarine, Coastal and Shelf Science 72: 168–176.

    Article  Google Scholar 

  • Williams, S. L. & K. L. Heck Jr., 2001. Seagrass community ecology. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland: 317–337.

    Google Scholar 

  • Witman, J. D. & P. K. Dayton, 2001. Rocky subtidal communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer, Sunderland: 339–366.

    Google Scholar 

  • Zajac, R. N., 2008. Macrobenthic biodiversity and sea floor landscape structure. Journal of Experimental Biology and Ecology 366: 198–203.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Drs Nojima, Yoko-o, Kurimoto and other (past) members of the AMBL-Kyushu University for various forms of assistance. This work was financially supported by the Kyushu University P & P program, the GCOE program (Centre of excellence for Asian conservation ecology as a basis of human-nature mutualism) of the Ministry of Education, Culture, Sports, Science and Technology and the scientific research grants from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tokeshi.

Additional information

Guest editors: K. E. Kovalenko & S. M. Thomaz / The importance of habitat complexity in waterscapes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokeshi, M., Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012). https://doi.org/10.1007/s10750-011-0832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0832-z

Keywords

Navigation