Advertisement

Hydrobiologia

, Volume 678, Issue 1, pp 37–47 | Cite as

Predatory disturbance and prey species diversity: the case of gray whale (Eschrichtius robustus) foraging on a multi-species mysid (family Mysidae) community

  • Laura Joan Feyrer
  • David A. Duffus
Primary Research Paper

Abstract

Why competitive exclusion does not limit the number of coexisting plankton species is a persistent question for community ecology. One explanation, the intermediate disturbance hypothesis (IDH), proposes that elevated species diversity is a product of moderate levels of disturbance that allow the subsequent invasion of less competitive species. Here, we assess the shifts in species diversity in a mysid (Mysidae Dana, 1850) zooplankton community, where at least 10 species have, over the last 15 years, have come to comprise the primary prey base of summer resident gray whales (Eschrictius robustus Lilljeborg, 1861) in Clayoquot Sound, British Columbia. We evaluate trends in the community structure of mysids (species dominance, diversity, and richness) across mysid habitat in the study area during the gray whale foraging season (May–September) for the period 1996 and 2008. Mysid species composition varies among years and diversity has increased as whales shifted their predatory focus from benthic amphipods (Ampeliscidae Costa, 1857) to mysids, near our starting point in 1996. Holmesimysis sculpta Tattersall, 1933 was the dominant species in early years; however, in 2007, the dominance shifted to Neomysis rayi Murdoch, 1885. The habitat restrictions and life history attributes of local populations of coastal mysids leave them vulnerable to the cumulative impacts of increased predation pressure by gray whales. This case study presents a unique examination implicating predation as an agent of disturbance capable of altering the species structure of a local prey community.

Keywords

Intermediate disturbance Top-down control Gray whales Mysids Species diversity 

Notes

Acknowledgments

Research was conducted in the traditional territory of the Ahousaht First Nation. Thanks to the late Chief Earl George and the residents of Ahousaht, Huey Clarke and family. M. O. Jangles, T. Lawson, R. Brushett, G. Lotz, K. Muirhead. C. Tombach, J. “Scotty” Dunham, H. Patterson, J. Maud, W. Megill, R. Burnham, C. Dedels, H. Mitchell, and the volunteers who assisted us in the field. Support for this research was generously provided by the Province of British Columbia Pacific Leaders Fellowship, the American Cetacean Society Puget Sound Chapter, the Department of Geography at the University of Victoria, the Society for Coastal and Ecological Research (SEACR), and the Derek Sewell Foundation.

References

  1. Albertsson, J., 2004. Trophic interactions involving mysid shrimps (Mysidacea) in the near-bottom habitat in the Baltic Sea. Aquatic Ecology 38: 457–469.CrossRefGoogle Scholar
  2. Bender, E. A., T. J. Case & M. E. Gilpin, 1984. Perturbation experiments in community ecology: theory and practice. Ecology 65: 1–13.CrossRefGoogle Scholar
  3. Bowen, W. D., 1997. Role of marine mammals in aquatic ecosystems. Marine Ecology Progress Series 158: 267–274.CrossRefGoogle Scholar
  4. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  5. Clutter, R. I., 1969. The microdistribution and social behaviour of some pelagic mysid shrimps. Journal of Experimental Marine Biology and Ecology 3: 125–155.CrossRefGoogle Scholar
  6. Connell, J., 1978. Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310.PubMedCrossRefGoogle Scholar
  7. Coyle, K. O., B. Bluhm, B. Konar, A. Blanchard & R. C. Highsmith, 2007. Amphipod prey of gray whales in the northern Bering Sea: comparison of biomass and distribution between the 1980s and 2002–2003. Deep-Sea Research Part II 54: 2906–2918.CrossRefGoogle Scholar
  8. Crawley, M. J., 2004. Timing of disturbance and coexistence in a species-rich ruderal plant community. Ecology 85: 3277–3288.CrossRefGoogle Scholar
  9. Croll, D. A., B. Marinovic, S. Benson, F. P. Chavez, N. Black, R. Temullo & B. R. Tershy, 2005. From wind to whales: trophic links in a coastal upwelling system. Marine Ecology Progress Series 289: 117–130.CrossRefGoogle Scholar
  10. DeMaster, D. P., A. Trites, P. Clapham, S. Mizroch, P. Wade, R. J. Small & J. Ver Hoef, 2006. The sequential megafaunal collapse hypothesis: testing with existing data. Progress in Oceanography 68: 329–342.CrossRefGoogle Scholar
  11. Duffus, D., 1996. The recreational use of grey whales in southern Clayoquot Sound, Canada. Applied Geography 16: 179–190.CrossRefGoogle Scholar
  12. Dunham, J. S. & D. A. Duffus, 2001. Foraging patterns of gray whales in central Clayoquot Sound, British Columbia, Canada. Marine Ecology Progress Series 223: 299–310.CrossRefGoogle Scholar
  13. Dunham, J. S. & D. A. Duffus, 2002. Diet of gray whales (Eschrichtius robustus) in Clayoquot Sound, British Columbia, Canada. Marine Mammal Science 18: 419–437.CrossRefGoogle Scholar
  14. Estes, J. A., M. T. Tinker, T. M. Williams & D. F. Doak, 1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282: 473–476.PubMedCrossRefGoogle Scholar
  15. Feyrer, L. J., 2010. Differences in embryo production between sympatric species of mysids (family Mysidae) in the shallow coastal waters off Vancouver Island, BC. Marine Biology 157: 2461–2465.CrossRefGoogle Scholar
  16. Feyrer, L. J & D. A. Duffus, 2011. Ecological, spatial and temporal linkages between gray whales and prey. Continental Shelf Research (in review)Google Scholar
  17. Fox, W. J., 2007. The dynamics of top-down and bottom-up effects in food webs of varying prey diversity, composition, and productivity. Oikos 116: 189–200.CrossRefGoogle Scholar
  18. Gaedeke, A. & U. Sommer, 1986. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71: 25–28.CrossRefGoogle Scholar
  19. Gaston, K. J., 1994. Rarity. Chapman & Hall, London.CrossRefGoogle Scholar
  20. Gorokhova, E. & M. Lehtiniemi, 2007. A combined approach to understand the trophic interactions between Cercopagis pengoi (Cladocera: Onychopoda) and mysids in the Gulf of Finland. Limnology and Oceanography 52: 685–695.CrossRefGoogle Scholar
  21. Gray, J. S., 2000. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology 250: 23–49.PubMedCrossRefGoogle Scholar
  22. Grebmeier, J. M., J. E. Overland, S. E. Moore, E. V. Farley, E. C. Carmack, L. W. Cooper, K. E. Frey, J. H. Helle, F. A. McLaughlin & S. L. McNutt, 2006. A major ecosystem shift in the Northern Bering Sea. Science 311: 1461–1464.PubMedCrossRefGoogle Scholar
  23. Green, J. M., 1970. Observation on the behavior and larval development of Acanthomysis sculpta (Tattersall), (Mysidacea). Canadian Journal of Zoology 48: 289–292.PubMedCrossRefGoogle Scholar
  24. Hacker, S. D. & S. D. Gaines, 1997. Some implications of direct positive interactions for community species diversity. Ecology 78: 1990–2003.CrossRefGoogle Scholar
  25. Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control and competition. American Naturalist 94: 421–425.CrossRefGoogle Scholar
  26. Herbert, P. D. & T. J. Crease, 1980. Clonal coexistence in Daphnia pulex (Leydig): another planktonic paradox. Science 207: 1363–1365.Google Scholar
  27. Highsmith, R. C. & K. O. Coyle, 1992. Productivity of arctic amphipods relative to gray whale energy requirements. Marine Ecology Progress Series 83: 141–150.CrossRefGoogle Scholar
  28. Hixon, M. A. & W. Brostoff, 1983. Damselfish as keystone species in reverse: intermediate disturbance and diversity of reef algae. Science 220: 511–513.PubMedCrossRefGoogle Scholar
  29. Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton species oscillations and chaos. Nature 402: 407–410.CrossRefGoogle Scholar
  30. Hunt, G. L. & S. McKinnel, 2006. Interplay between top-down, bottom-up, and wasp-waist control in marine ecosystems. Progress in Oceanography 68: 115–124.CrossRefGoogle Scholar
  31. Huston, M., 1979. A general hypothesis of species diversity. American Naturalist 113: 81–101.CrossRefGoogle Scholar
  32. Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harbor symposium. Quantitative Biology 22: 415–427.Google Scholar
  33. Hutchinson, G. E., 1961. The paradox of the plankton. American Naturalist 95: 137–145.CrossRefGoogle Scholar
  34. Jumars, P., 2007. Habitat coupling by mid-latitude, subtidal, marine mysids: import-subsidized omnivores. Oceanography and Marine Biology 45: 1–50.Google Scholar
  35. Kathman, R. D., W. C. Austin, J. C. Saltman & J. D. Fulton, 1986. Identification manual to the Mysidacea and Euphausiacea of the northeast Pacific. Canadian Special Publications in Fisheries and Aquatic Science 93.Google Scholar
  36. Katona, S. & H. Whitehead, 1988. Are Cetacea ecologically important? Oceanography and Marine Biology Annual Review 26: 553–568.Google Scholar
  37. Kim, S. L. & J. S. Oliver, 1989. Swarming benthic crustaceans in the Bering and Chukchi Seas and their relation to geographic patterns in grey whale feeding. Canadian Journal of Zoology 67: 1531–1543.CrossRefGoogle Scholar
  38. Krebs, C. J., 1999. Ecological Methodology, 2nd ed. Harper & Row, New York.Google Scholar
  39. Kvitek, R. G. & J. S. Oliver, 1986. Side-scan sonar impressions of gray whale feeding grounds along Vancouver Island, Canada. Continental Shelf Research 6: 639–654.CrossRefGoogle Scholar
  40. Lande, R., P. J. DeVries & T. Walla, 2000. When species accumulation curves intersect: implications for ranking diversity using small samples. Oikos 89: 601–605.CrossRefGoogle Scholar
  41. Laskin, D., D. A. Duffus & D. J. Bender, 2010. Mysteries of the not so deep: an investigation into gray whale habitat use along the west coast of Vancouver Island, British Columbia. In Breman, J. (ed.), Ocean Globe. ESRI Press, Redlands.Google Scholar
  42. Lindholm, M., D. O. Hessen & L. Ramberg, 2009. Diversity, dispersal and disturbance: cladoceran species composition in the Okavango Delta. African Zoology 44: 24–35.CrossRefGoogle Scholar
  43. Magurran, A., 2004. Measuring Biological Diversity. Blackwell Publishing, Malden.Google Scholar
  44. Mauchline, J., 1980. The biology of mysids and euphausiids. Advanced Marine Biology 18: 1–444.Google Scholar
  45. McGuinness, K. A., 1987. Disturbance and organisms on boulders. II. Causes of patterns in diversity and abundance. Oecologia 71: 420–430.CrossRefGoogle Scholar
  46. Menge, B. A. & J. P. Sutherland, 1976. Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity. American Naturalist 110: 351–369.CrossRefGoogle Scholar
  47. Moore, S. E. & H. P. Huntington, 2008. Arctic marine mammals and climate change: impacts and resilience. Ecological Applications 18: 157–165.CrossRefGoogle Scholar
  48. Moore, S. E., J. M. Grebmeier & J. R. Davies, 2003. Gray whale distribution relative to forage habitat in the northern Bering Sea: current conditions and retrospective summary. Canadian Journal of Zoology 81: 734–742.CrossRefGoogle Scholar
  49. Mulkins, L. M., D. E. Jelinski, J. D. Karagatzides & A. Carr, 2002. Carbon isotope composition of mysids at a terrestrial-marine ecotone, Clayoquot Sound, British Columbia, Canada. Estuarine and Coastal Shelf Science 54: 669–675.CrossRefGoogle Scholar
  50. Nelson, T. A., D. A. Duffus, C. Robertson & L. J. Feyrer, 2008. Spatial-temporal patterns in intra-annual gray whale foraging: characterizing interactions between predators and prey in Clayoquot Sound, BC. Marine Mammal Science 24: 356–370.CrossRefGoogle Scholar
  51. Nelson, T. A., D. A. Duffus, C. Robertson, C. Labree & L. J. Feyrer, 2009. Spatial-temporal analysis of marine wildlife. Journal of Coastal Research 56: 1537–1541.Google Scholar
  52. Nerini, M., 1984. A review of gray whale feeding ecology. In Jones, M. L., S. L. Swartz & S. Leatherwood (eds), The Gray Whale, Eschrichtius robustus. Academic Press, Orlando.Google Scholar
  53. Newell, C. L. & T. J. Cowles, 2006. Unusual gray whale (Eschrichtius robustus) feeding in the summer of 2005 off the central Oregon Coast. Geophysical Research Letters 33: 1–5.CrossRefGoogle Scholar
  54. O’Brien, D. P. & D. A. Ritz, 1988. Escape responses of gregarious mysids (Crustacea: Mysidacea): towards a general classification of escape responses in aggregated crustaceans. Journal of Experimental Marine Biology and Ecology 116: 257–272.CrossRefGoogle Scholar
  55. Paine, R. T., 1966. Food web complexity and species diversity. American Naturalist 100: 65–76.CrossRefGoogle Scholar
  56. Paine, R. T., 2006. Whales, interaction webs, zero-sum ecology. In Estes, J. A., D. E. Demaster, D. E. Doak, T. M. Williams & R. I. Brownell (eds), Whales, Whaling and Ocean Ecosystems. University of California Press, Berkley.Google Scholar
  57. Reynolds, C. S., J. Padisak & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183–188.CrossRefGoogle Scholar
  58. Rice, D. W. & A. A. Wolman, 1971. The life history of the gray whale (Eschrichtius robustus). American Society of Mammalogists, Special Publication 3.Google Scholar
  59. Richerson, P., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the “paradox of the plankton”. PNAS 67: 1710–1714.PubMedCrossRefGoogle Scholar
  60. Roast, S. D., J. Widdows & M. B. Jones, 1999. Respiratory responses of the estuarine mysid Neomysis integer (Peracarida: Mysidacea) in relation to a variable environment. Marine Biology 133: 643–649.CrossRefGoogle Scholar
  61. Romanuk, T. N., R. J. Vogt & J. Kolasa, 2009. Ecological realism and mechanisms by which diversity begets stability. Oikos 118: 819–828.CrossRefGoogle Scholar
  62. Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.CrossRefGoogle Scholar
  63. Schoener, T. W., 1974. Resource partitioning in ecological communities. Science 185: 27–39.PubMedCrossRefGoogle Scholar
  64. Sousa, W. P., 2001. Natural disturbance and the dynamics of marine benthic communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer Associates, Sunderland.Google Scholar
  65. Springer, A. M., J. A. Estes, G. B. van Vliet, T. M. Williams, D. F. Doak, E. M. Danner, K. A. Forney, & B. P. Fister, 2003. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling? PNAS. 100(21): 12223–12228.Google Scholar
  66. Steele, J. H., 1998. From carbon flux to regime shift. Fisheries and Oceanography 7: 176–181.CrossRefGoogle Scholar
  67. Stelle, L. L., W. M. Megill & M. R. Kinzel, 2008. Activity budget and diving behavior of gray whales (Eschrichtius robustus) in feeding grounds off coastal British Columbia. Marine Mammal Science 24: 462–478.CrossRefGoogle Scholar
  68. Svensson, J. R., M. Lindegarth & H. Pavia, 2009. Equal rates of disturbance cause different patterns of diversity. Ecology 90: 496–505.PubMedCrossRefGoogle Scholar
  69. Svensson, J. R., M. Lindegarth & H. Pavia, 2010. Physical and biological disturbances interact differently with productivity: effects on floral and faunal richness. Ecology 91: 3069–3080.PubMedCrossRefGoogle Scholar
  70. Turpen, S., J. W. Hunt, B. S. Anderson & J. S. Pearse, 1994. Population structure, growth and fecundity of the kelp forest mysid Holmesimysis costata in Monterey Bay, California. Journal of Crustacean Biology 14: 657–664.CrossRefGoogle Scholar
  71. Wittmann, J. K., 1984. Ecophysiology of marsupial development and reproduction in Mysidacea (Crustacea). Oceanography and Marine Biology Annual Review 22: 393–428.Google Scholar
  72. Worm, B. & R. A. Myers, 2003. Meta-analysis of cod–shrimp interactions reveals top-down control in oceanic food webs. Ecology 84: 162–173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Whale Research Lab, Department of GeographyUniversity of VictoriaVictoriaCanada

Personalised recommendations