Stress response to daily temperature fluctuations in common carp, Cyprinus carpio L.

Abstract

The littoral zone of lakes and lagoons is often used by fish for feeding or reproduction. However, the large changes in temperature that are typical of natural environments, including the littoral zone, represent a potential stressor for fish. Despite the importance of this habitat, little is known about the effect of daily temperature fluctuations on the stress responses of fish. We monitored daily temperature changes in the near-shore and offshore regions of a natural lagoon between May and July 2008–2010. We observed large temperature fluctuations more frequently in the near-shore zone than the offshore zone. We then exposed common carp (Cyprinus carpio) to a temperature regime similar to that observed in the near-shore zone and measured the levels of cortisol released into the water. The rate of cortisol release increased when carp were exposed to an increase in temperature of ~0.6°C/h over a 5-h period. Conversely, there was no change in the rate of release when temperatures decreased. Our results highlight the importance of maintaining high temporal resolution when evaluating the stress response to daily fluctuations temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Barton, B. A., 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology 42: 517–525.

    PubMed  Article  CAS  Google Scholar 

  2. Barus, V., M. Penaz & K. Kohlmann, 2002. Cyprinus carpio (Linnaeus, 1758). In Banarescu, P. M. & H.-J. Paepke (eds), The Freshwater Fishes of Europe, Volume 5/III: (Cyprinidae 2/III): Carassius to Cyprinus. Gasterosteidae, Aula-Verlag: 85–179.

    Google Scholar 

  3. Beitinger, T. L., 1990. Behavioral reactions for the assessment of stress in fishes. Journal of Great Lakes Research 16: 495–528.

    Article  CAS  Google Scholar 

  4. Ellis, T., J. D. James, C. Stewart & A. P. Scott, 2004. A non-invasive stress assay based upon measurement of free cortisol released into the water by rainbow trout. Journal of Fish Biology 65: 1233–1252.

    Article  CAS  Google Scholar 

  5. Ellis, T., J. D. James, H. Sundh, F. Fridell, K. Sundell & A. P. Scott, 2007. Non-invasive measurement of cortisol and melatonin in tanks stocked with seawater Atlantic salmon. Aquaculture 272: 698–706.

    Article  CAS  Google Scholar 

  6. Engelsma, M. Y., S. Hougee, D. Nap, M. Hofenk, J. H. W. M. Rombout, W. B. Van Muiswinkel & B. M. L. Verburg-van Kemenade, 2003. Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp, Cyprinus carpio L. Fish and Shellfish Immunology 15: 397–410.

    PubMed  Article  CAS  Google Scholar 

  7. Fast, M. D., D. M. Muise, R. E. Easy, N. W. Ross & S. C. Johnson, 2006. The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic salmon (Salmo salar). Fish and Shellfish Immunology 21: 228–241.

    PubMed  Article  CAS  Google Scholar 

  8. Fevolden, S. E., R. Nordmo & T. Refstie, 1993. Disease resistance in Atlantic salmon (Salmo salar) selected for high or low responses to stress. Aquaculture 109: 215–224.

    Article  Google Scholar 

  9. Fridell, F., K. Gadan, H. Sundh, G. L. Taranger, J. Glette, R. E. Olsen, K. Sundell & Ø. Evensen, 2007. Effect of hyperoxygenation and low water flow on the primary stress response and susceptibility of Atlantic salmon Salmo salar L. to experimental challenge with IPN virus. Aquaculture 270: 23–35.

    Article  Google Scholar 

  10. Hirai, K. I., 1972. Ecological studies on fry and juvenile of fishes at aquatic plant areas in a bay of Lake Biwa: III. Relationship of the food habits to the habitat of nigorobuna (Carassius carassius) larvae. Japanese Journal of Ecology 22: 69–93. (in Japanese with English abstract).

    Google Scholar 

  11. Honjo, M. N., T. Minamoto, K. Matsui, K. Uchii, H. Yamanaka, A. A. Suzuki, Y. Kohmatsu, T. Iida & Z. Kawabata, 2010. Quantification of cyprinid herpesvirus 3 in environmental water by using an external standard virus. Applied and Environmental Microbiology 76: 161–168.

    PubMed  Article  CAS  Google Scholar 

  12. Hou, Y. Y., Y. Suzuki & K. Aida, 1999. Effects of steroid hormones on immunoglobulin M (IgM) in rainbow trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry 20: 155–162.

    Article  CAS  Google Scholar 

  13. Lower, N., A. Moore, A. P. Scott, T. Ellis, J. D. James & I. C. Russell, 2005. A non-invasive method to assess the impact of electronic tag insertion on stress levels in fishes. Journal of Fish Biology 67: 1202–1212.

    Article  Google Scholar 

  14. Lupica, S. J. & J. W. Turner Jr, 2010. Noninvasive assessment of nitrate-induced stress in koi Cyprinus carpio L. by faecal cortisol measurement. Aquaculture Research 41: 1622–1629.

    Article  CAS  Google Scholar 

  15. Lyytikäinen, T., P. Pylkkö, O. Ritola & P. Lindström-Seppä, 2002. The effect of acute stress and temperature on plasma cortisol and ion concentrations and growth of Lake Inari Arctic charr, Salvelinus alpinus. Environmental Biology of Fishes 64: 195–202.

    Article  Google Scholar 

  16. Matsui, K., M. Honjo, Y. Kohmatsu, K. Uchii, R. Yonekura & Z. Kawabata, 2008. Detection and significance of koi herpesvirus (KHV) in freshwater environments. Freshwater Biology 53: 1262–1272.

    Article  Google Scholar 

  17. Minamoto, T., M. N. Honjo & Z. Kawabata, 2009. Seasonal distribution of cyprinid herpesvirus 3 in Lake Biwa, Japan. Applied and Environmental Microbiology 75: 6900–6904.

    PubMed  Article  CAS  Google Scholar 

  18. Person-Le Ruyet, J., K. Mahé, N. Le Bayon & H. Le Delliou, 2004. Effects of temperature on growth and metabolism in a mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237: 269–280.

    Article  Google Scholar 

  19. Pottinger, T. G., 2010. A multivariate comparison of the stress response in three salmonid and three cyprinid species: evidence for inter-family differences. Journal of Fish Biology 76: 601–621.

    PubMed  Article  CAS  Google Scholar 

  20. Ruane, N. M. & H. Komen, 2003. Measuring cortisol in the water as an indicator of stress caused by increased loading density in common carp (Cyprinus carpio). Aquaculture 218: 685–693.

    Article  CAS  Google Scholar 

  21. Savino, J. F. & R. A. Stein, 1982. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Transactions of the American Fisheries Society 111: 255–266.

    Article  Google Scholar 

  22. Scott, A. P. & T. Ellis, 2007. Measurement of fish steroids in water – a review. General and Comparative Endocrinology 153: 392–400.

    PubMed  Article  CAS  Google Scholar 

  23. Scott, A. P., K. Hirschenhauser, N. Bender, R. Oliveira, R. L. Earley, M. Sebire, T. Ellis, M. Pavlidis, P. C. Hubbard, M. Huertas & A. Canario, 2008. Non-invasive measurement of steroids in fish-holding water: important considerations when applying the procedure to behaviour studies. Behaviour 145: 1307–1328.

    Article  Google Scholar 

  24. Strange, R. J., C. B. Schreck & J. T. Golden, 1977. Corticoid stress responses to handling and temperature in salmonids. Transactions of the American Fisheries Society 106: 213–218.

    Article  CAS  Google Scholar 

  25. Tanck, M. W. T., G. H. R. Booms, E. H. Eding, S. E. Bonga & J. Komen, 2000. Cold shocks: a stressor for common carp. Journal of Fish Biology 57: 881–894.

    Article  Google Scholar 

  26. Thomas, R. E., J. A. Gharrett, M. G. Carls, S. D. Rice, A. Moles & S. Korn, 1986. Effects of fluctuating temperature of mortality, stress, and energy reserves of juvenile coho salmon. Transactions of the American Fisheries Society 115: 52–59.

    Article  Google Scholar 

  27. Uchii, K., A. Telschow, T. Minamoto, H. Yamanaka, M. N. Honjo, K. Matsui & Z. Kawabata, 2011. Transmission dynamics of an emerging infectious disease in wildlife through host reproductive cycles. The ISME Journal 5: 244–251.

    PubMed  Article  Google Scholar 

  28. Watanuki, H., T. Yamaguchi & M. Sakai, 2002. Suppression in function of phagocytic cells in common carp Cyprinus carpio L. injected with estradiol, progesterone or 11-ketotestosterone. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 132: 407–413.

    PubMed  Article  Google Scholar 

  29. Wendelaar Bonga, S. E., 1997. The stress response in fish. Physiological Reviews 77: 591–626.

    PubMed  CAS  Google Scholar 

  30. Wong, S. C., M. Dykstra, J. M. Campbell & R. L. Earley, 2008. Measuring water-borne cortisol in convict cichlids (Amatitlania nigrofasciata): is the procedure a stressor? Behaviour 145: 1283–1305.

    Article  Google Scholar 

  31. Yamanaka, H., Y. Kohmatsu, T. Minamoto & Z. Kawabata, 2010. Spatial variation and temporal stability of littoral water temperature relative to lakeshore morphometry: environmental analysis from the view of fish thermal ecology. Limnology 11: 71–76.

    Article  Google Scholar 

  32. Yuma, M., K. Hosoya & Y. Nagata, 1998. Distribution of the freshwater fishes of Japan: an historical overview. Environmental Biology of Fishes 52: 97–124.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. M. Ototake, K. Yuasa, N. Ohsako, and S. Miwa at the NRIA for their comments and discussion of the experimental design. This work was supported by the RIHN C-06 research project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Teruhiko Takahara.

Additional information

Handling editor: M. Power

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takahara, T., Yamanaka, H., Suzuki, A.A. et al. Stress response to daily temperature fluctuations in common carp, Cyprinus carpio L.. Hydrobiologia 675, 65 (2011). https://doi.org/10.1007/s10750-011-0796-z

Download citation

Keywords

  • Cortisol
  • Fish
  • Non-invasive assay
  • Shore
  • Stress
  • Temperature