, Volume 676, Issue 1, pp 117–128 | Cite as

Using morphological characters of subfossil daphniid postabdominal claws to improve taxonomic resolution within species complexes

  • Jennifer B. Korosi
  • Adam Jeziorski
  • John P. Smol


Daphnia subfossils from lake sediments are useful for exploring the impacts of environmental stressors on aquatic ecosystems. Unfortunately, taxonomic resolution of Daphnia remains is coarse, as only a small portion of the animal is preserved, and so the identification of daphniid subfossils typically relies upon postabdominal claws. Daphniid claws can be assigned to one of two species complexes: D. longispina or D. pulex. Both complexes contain species with differing environmental optima, and therefore improved taxonomic resolution of subfossil daphniid claws would aid paleolimnological analyses. To identify morphological features that may be used to help differentiate between species within complexes, we used species presence/absence data from net tows to select lakes in central Ontario (Canada) containing only a single species from a particular complex, then used remains preserved in surface sediments of these lakes to isolate four Daphnia species: D. ambigua and D. mendotae from the D. longispina complex, and D. pulicaria and D. catawba from the D. pulex complex. Our analyses demonstrate that, within the D. longispina complex, postabdominal claw length (PCL) and spinule length can be used to distinguish D. mendotae from D. ambigua. In addition, within the D. pulex complex, there are differences between D. pulicaria and D. catawba in the relative lengths of the proximal and middle combs on the postabdominal claw. However, the number of stout spines on the middle comb is an unreliable character for differentiating species. Overall, our data demonstrate that greater resolution within Daphnia species complexes is possible using postabdominal claws; however, the process is arduous, and applicability will likely decrease with the number of taxa present.


Daphnia Paleolimnology Species complexes Identification guide  Postabdominal claws 



We thank Angelo Sorce and Kris Hadley for participation in the field work, as well as Allegra Cairns and Norman Yan of York University, and the rest of the CAISN sampling team, for providing modern-day daphniid species presence/absence data. We also thank two anonymous reviewers who improved the quality of the manuscript. This project was funded by NSERC grants to JPS and JBK, and an Ontario Premier’s Discovery Award to JPS.


  1. Amsinck, S. L., E. Jeppesen & F. Landkildehus, 2005. Inference of past changes in zooplankton community structure and planktivorous fish abundance from sedimentary subfossils—a study of a coastal lake subjected to major fish kill incidents during the past century. Archiv für Hydrobiologie 162: 363–382.CrossRefGoogle Scholar
  2. Ashforth, D. & N. D. Yan, 2008. The interactive effects of calcium concentration and temperature on the survival and reproduction of Daphnia pulex at high and low food concentrations. Limnology and Oceanography 53: 420–432.CrossRefGoogle Scholar
  3. Barton, A. M., A. M. Nurse, K. Michaud & S. W. Hardy, 2010. Use of CART analysis to differentiate pollen of red pine (Pinus resinosa) and jack pine (P. banksiana) in New England. Quaternary Research 75: 18–23.CrossRefGoogle Scholar
  4. Beckerman, A. P., G. M. Rodgers & S. R. Dennis, 2010. The reaction norm of size and age at maturity under multiple predator risk. Journal of Animal Ecology 79: 1069–1076.PubMedCrossRefGoogle Scholar
  5. Bigler, C., O. Heiri, R. Krskova, A. F. Lotter & M. Sturm, 2006. Distribution of diatoms, chironomids, and Cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquatic Science 68: 154–171.CrossRefGoogle Scholar
  6. Bos, D. G. & B. F. Cumming, 2003. Sedimentary Cladocera remains and their relationship to nutrients and other limnological variables in 53 lakes from British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 1177–1189.CrossRefGoogle Scholar
  7. Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anostraca from the Interior Plateau of British Columbia, Canada as paleolimnological indicators of salinity and lake level. Hydrobiologia 392: 129–141.CrossRefGoogle Scholar
  8. Bredesen, E. L., D. G. Bos, K. R. Laird & B. F. Cumming, 2002. A cladoceran-based paleolimnological assessment of the impact of forest harvesting on four lakes from the central interior of British Columbia, Canada. Journal of Paleolimnology 28: 389–402.CrossRefGoogle Scholar
  9. Brugam, R. B. & B. J. Speziale, 1983. Human disturbance and the paleolimnological record of change in the zooplankton community of Lake Harriet, Minnesota. Ecology 64: 578–591.CrossRefGoogle Scholar
  10. Cairns, A., 2010. Field Assessments and Evidence of Impact of Calcium Decline on Daphnia (Crustacea, Anomopoda) in Canadian Shield Lakes. MSc thesis, York University, Toronto, Ontario, Canada.Google Scholar
  11. Cairns, A., M. Elliott, N. D. Yan & E. Weisz, 2006. Operationalizing CAISN project 1.V, Technical Report No. 1: Lake Selection. Technical Report Prepared for the Canadian Aquatic Invasive Species Network. Dorset Environmental Science Centre, Dorset, Ontario.Google Scholar
  12. Cairns, A., N. D. Yan, E. Weisz, J. Petruniak, & J. Hoare, 2007. Operationalizing CAISN Project 1.V, Technical Report No. 2: The Large, Inland Lake, Bythotrephes survey—Limnology, Database Design, and Presence of Bythotrephes in 311 south-central Ontario Lakes. Technical Report Prepared for the Canadian Aquatic Invasive Species Network. Dorset Environmental Science Centre, Dorset, Ontario.Google Scholar
  13. DeSellas, A. M., A. M. Paterson, J. N. Sweetman & J. P. Smol, 2008. Cladocera assemblages from the surface sediments of south-central Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia 600: 105–119.CrossRefGoogle Scholar
  14. Dudycha, J. L., 2004. Mortality dynamics of Daphnia in constrasting habitats and their role in ecological divergence. Freshwater Biology 49: 505–514.CrossRefGoogle Scholar
  15. Glew, J., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.CrossRefGoogle Scholar
  16. Glew, J., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.CrossRefGoogle Scholar
  17. Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.CrossRefGoogle Scholar
  18. Hebert, P. D. N., 1995. The Daphnia of North America: An Illustrated Fauna (CD-ROM). University of Guelph, Guelph.Google Scholar
  19. Hebert, P. D. N. & T. L. Finston, 1997. A taxonomic reevaluation of North American Daphnia (Crustacea: Cladocera) III. The D. catawba complex. Canadian Journal of Zoology 75: 1254–1261.CrossRefGoogle Scholar
  20. Hebert, P. D. N., S. S. Schwartz, R. D. Ward & T. L. Finston, 1993. Macrogeographic patterns of breeding system diversity in the Daphnia pulex group I: breeding systems of Canadian populations. Heredity 70: 148–161.CrossRefGoogle Scholar
  21. Jeziorski, A., N. D. Yan, A. M. Paterson, A. M. DeSellas, M. A. Turner, D. S. Jeffries, W. Keller, R. C. Weeber, D. K. McNicol, M. E. Palmer, K. McIver, K. Arseneau, B. K. Ginn, B. F. Cumming & J. P. Smol, 2008 The widespread threat of calcium decline in fresh waters. Science 322: 1374–1377.PubMedCrossRefGoogle Scholar
  22. Jeziorski, A., A. M. Paterson & J. P. Smol, 2011 Crustacean zooplankton sedimentary remains from calcium-poor lakes: complex responses to threshold concentrations. Aquatic Sciences. doi: 10.1007/s00027-011-0202-y.
  23. Kamenik, C., K. Szeroczynska & R. Schmidt, 2007. Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594: 33–46.CrossRefGoogle Scholar
  24. Keller, W. & J. R. Pitblado, 1984. Crustacean plankton in northeastern Ontario lakes subjected to acidic deposition. Water, Air, and Soil Pollution 23: 271–291.CrossRefGoogle Scholar
  25. Korhola, A., 1999. Distribution patterns of Cladocera in subarctic fennoscandian lakes and their potential in environmental reconstruction. Ecogeography 22: 357–373.CrossRefGoogle Scholar
  26. Korhola, A. & M. Rautio, 2001. Cladocera and other brachiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht: 5–41.Google Scholar
  27. Korosi, J. B. & J. P. Smol, 2011. Examining patterns in the distribution of cladoceran assemblage and size structure in Nova Scotia Canada. Hydrobiologia 663: 83–99.CrossRefGoogle Scholar
  28. Korosi, J. B., A. M. Paterson, A. M. DeSellas & J. P. Smol, 2008. Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: a paleolimnological approach. Journal of Limnology 67: 22–34.Google Scholar
  29. Korosi, J. B., A. M. Paterson, A. M. DeSellas & J. P. Smol, 2010. Comparison of present-day and pre-industrial changes in Bosmina and Daphnia size structure from soft-water Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 67(4): 754–762.CrossRefGoogle Scholar
  30. Leavitt, P. R., P. R. Sanford, S. R. Carpenter & J. F. Kitchell, 1994. An annual fossil record of production, planktivory, and piscivory during whole lake manipulations. Journal of Paleolimnology 11: 133–149.CrossRefGoogle Scholar
  31. Lehman, J. T. & C. E. Cáceres, 1997. Food-web responses to species invasion by a predatory invertebrate: Bythotrephes in Lake Michigan. Limnology and Oceanography 38: 879–891.CrossRefGoogle Scholar
  32. Lindbladh, M., R. O’Connor & G. L. Jacobson Jr., 2002. Morphometric analysis of pollen grains for paleoecological studies: classification of Picea from eastern North America. American Journal of Botany 89: 1459–1467.PubMedCrossRefGoogle Scholar
  33. Lynch, M., 1977. Fitness and optimal body size in zooplankton populations. Ecology 58: 763–774.CrossRefGoogle Scholar
  34. Manca, M., C. Ramoni & P. Comoli, 2000. The decline of Daphnia hyalina galeata in Lago Maggiore: a comparison of the population dynamics before and after oligotrophication. Aquatic Science 62: 142–153.Google Scholar
  35. Mills, R. B., A. M. Paterson, J. M. Blais, D. R. S. Lean, J. P. Smol & G. Mierle, 2009. Factors influencing the achievement of steady state in mercury contamination among lakes and catchments of south-central Ontario. Canadian Journal of Fisheries and Aquatic Sciences 66: 187–200.CrossRefGoogle Scholar
  36. Moore, M. V., C. L. Folt & R. S. Stemberger, 1996. Consequence of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv für Hydrobiologie 135: 289–319.Google Scholar
  37. Paterson, M. J., 1994. Paleolimnological reconstruction of recent changes in assemblages of Cladocera from acidified lakes in the Adirondack Mountains (New York). Journal of Paleolimnology 11: 189–200.CrossRefGoogle Scholar
  38. R Development Core Team, 2011. R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 [available on internet at].
  39. Schwartz, S. S., D. J. Innes & P. D. N. Hebert, 1985. Morphological separation of Daphnia pulex and Daphnia obtusa in North America. Limnology and Oceanography 30: 189–197.CrossRefGoogle Scholar
  40. Taylor, D. J., P. D. N. Hebert & J. K. Colborne, 1996. Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Molecular Phylogenetics and Evolution 5: 495–510.PubMedCrossRefGoogle Scholar
  41. Therneau, T. M. & B. Atkinson, 2009. Rpart: Recursive Partitioning. R Package. Version 3.1-45 [available on internet at].
  42. Witty, L. M., 2004. Practical Guide to Identifying Freshwater Crustacean Zooplankton. Cooperative Freshwater Ecology Unit, Department of Biology, Laurentian University, Sudbury.Google Scholar
  43. Yan, N. D., A. Blukacz, W. G. Sprules, P. K. Kindy, D. Hackett, R. E. Girard & B. J. Clark, 2001. Changes in zooplankton and the phenology of the spiny water flea, Bythotrephes, following its invasion of Harp Lake, Ontario, Canada. Canadian Journal of Fisheries and Aquatic Sciences 58: 2341–2350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jennifer B. Korosi
    • 1
  • Adam Jeziorski
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations