, Volume 671, Issue 1, pp 147–163 | Cite as

Possible effects of global climate change on the ecosystem of Lake Tanganyika

  • Jaya NaithaniEmail author
  • Pierre-Denis Plisnier
  • Eric Deleersnijder
Primary Research Paper


Any change in the air temperature, wind speed, precipitation, and incoming solar radiation induced by increasing greenhouse gasses and climate change will directly influence lakes and other water bodies. The influence can cause changes in the physical (water temperature, stratification, transparency), chemical (nutrient loading, oxygen) and biological (structure and functioning of the ecosystem) components of the Lake. In this work an influence of the likely effects of the climate change on the above three components of Lake Tanganyika are studied by means of a simple ecological model. Simulations for the years 2002–2009 have been performed using the wind and solar radiation data from the National Centres for Environmental Protection (NCEP) reanalysis. Various possible climatic scenarios are studied by changing the surface layer depth, its temperature and the wind stress. Any change in any of the above physical forcing parameters modifies the timing and intensity of the dry season peaks of the biogeochemical parameters. It is seen that the gross production increases as temperature of the surface layer increases and its depth decreases. High temperature and low wind stress, reduces the biomass. The effects of a slight increase in lake water temperature on the Lake Tanganyika ecosystem might be mitigated by increased windiness, if the latter was sufficient to induce greater mixing.


Lake Tanganyika Ecological and hydrodynamic model Climate change Sensitivity analysis 



This work is based on the previous research projects funded by the Belgian Science Policy: ‘Climate Variability as Recorded by Lake Tanganyika’, CLIMLAKE, and ‘Climate change impact on the sustainable use of Lake Tanganyika fisheries’: CLIMFISH (STEREO) with the help of the Belgian Cooperation (DGCD) within the framework agreement with the Royal Museum for Central Africa (MRAC), Tervuren, Belgium. Part of this work was achieved in the framework of the CHOLTIC project, funded by the Belgian Science Policy office (BELSPO) under contract SD/AR/04a. Thanks are due to Prof. Yves Cornet of the University of Liege, Liege, Belgium. Eric Deleersnijder is a Research Associate with the Belgian National Fund for Scientific Research (FNRS).


  1. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. V. Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.PubMedCrossRefGoogle Scholar
  2. Alin, S. R., A. S. Cohen, R. Bills, M. M. Gashagaza, E. Michel, J.-J. Tiercelin, K. Martens, P. Coveliers, S. K. Mboko, K. West, M. Soreghan, S. Kimbadi & G. Ntakimazi, 1999. Effects of landscape disturbance on animal communities in Lake Tanganyika. Conservation Biology 13: 1017–1033.CrossRefGoogle Scholar
  3. Beauchamp, R. S. A., 1939. Hydrology of Lake Tanganyika. Journal of Ecology 41: 226–239.Google Scholar
  4. Caljon, A. G., 1992. Water quality in the Bay of Bujumbura (Lake Tanganyika) and its influence on phytoplankton composition. Mitteilungen Internationale Vereingung für Theoretische und Angewandte Limnologie 23: 55–65.Google Scholar
  5. Carpenter, S. R., et al., 2007. Understanding regional change: a comparison of two lake districts. Bioscience 57: 323–335.CrossRefGoogle Scholar
  6. Cohen, A. S., R. Bills, C. Z. Cocquyt & A. G. Caljon, 1993. The impact of sediment pollution on biodiversity in Lake Tanganyika. Conservation Biology 7: 667–677.CrossRefGoogle Scholar
  7. Coulter, G. W., 1991. Lake Tanganyika and Its Life. Oxford University Press, London.Google Scholar
  8. Coulter, G. W. & R. H. Spigel, 1991. Hydrodynamics. In Coulter, G. W. (ed.), Lake Tanganyika and Its Life. Oxford University Press, London: 49–75.Google Scholar
  9. De Stasio, B. Jr., D. K. Hill, J. M. Kleinhans, N. P. Nibbelink & J. J. Magnuson, 1996. Potential effects of global climate change on small north-temperate lakes: physics, fish and plankton. Limnology and Oceanography 41: 1136–1149.CrossRefGoogle Scholar
  10. Edmond, J. M., R. F. Stallard, H. Craig, V. Craig, R. F. Weiss & G. W. Coulter, 1993. Nutrient chemistry of the water column of Lake Tanganyika. Limnology and Oceanography 38: 725–738.CrossRefGoogle Scholar
  11. Fee, E. J., 1979. A relation between lake morphometry and primary production and its use in interpreting whole-lake eutrophication experiments. Limnology and Oceanography 21: 767–783.CrossRefGoogle Scholar
  12. Fee, E. J., J. A. Shearer, E. R. DeBruyn & E. U. Schindler, 1992. Effects of lake size on phytoplankton photosynthesis. Canadian Journal of Fisheries and Acquatic Sciences 49: 2445–2459.CrossRefGoogle Scholar
  13. Fee, E. J., R. E. Hecky, S. E. M. Kasian & D. R. Cruikshank, 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnology and Oceanography 41: 912–920.CrossRefGoogle Scholar
  14. Hecky, R. E. & E. J. Fee, 1981. Primary production and rates of algal growth in Lake Tanganyika. Limnology and Oceanography 26: 532–547.CrossRefGoogle Scholar
  15. Hecky, R. E. & J. Kling, 1981. The phytoplankton and zooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content and spatio-temporal distribution. Limnology and Oceanography 26: 548–564.CrossRefGoogle Scholar
  16. Hecky, R. E. & H. Kling, 1987. Phytoplankton ecology of the great lakes in the rift valley of central Africa. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 25: 197–228.Google Scholar
  17. Hecky, R. E., R. H. Spigel & G. W. Coulter, 1991. Nutrient regime. In Coulter, G. W. (ed.), Lake Tanganyika and Its Life. Oxford University Press, London: 76–89.Google Scholar
  18. Hondzo, M. & H. G. Stefan, 1991. Three case studies of lake temperature and stratification response to warmer climate. Water Resources Research 27: 1837–1846.CrossRefGoogle Scholar
  19. Hondzo, M. & H. G. Stefan, 1993. Regional water temperature characteristics of lakes subjected to climate change. Climate Change 24: 187–211.CrossRefGoogle Scholar
  20. Izmest’eva, L. R. & E. A. Silow, 2008. Global Climate Change and the Lake Baikal Plankton. Baikal Workshop, 1–5 August.Google Scholar
  21. Järvinen, M., K. Salonen, J. Sarvala, K. Vuorio & A. Virtanen, 1999. The stoichiometry of particulate nutrients in Lake Tanganyika–implications for nutrient limitation of phytoplankton. Hydrobiologia 407: 81–88.CrossRefGoogle Scholar
  22. Jorgensen, E., G. Nitakimzi & S. Kayombo, 2006. Lake Tanganyika Experience and Lessons Learned Brief. World Lake Database. International Lake Environment Committee Foundation (ILEC), Kusatsu-shi: 363–374.Google Scholar
  23. Kamenya, S. M., J. Goodall, E. Mtiti & Ndimuligo, S., 2008. We cannot let it go: conservation efforts in Albertine Rift in Western Tanzania. Paper Presented at the Annual Meeting of the International Congress for Conservation Biology, Convention Center, Chattanooga, Tanzania.Google Scholar
  24. King, J. R., B. Shuter & P. Zimmerman, 1997. The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Canadian Journal of Fisheries and Aquatic Sciences 54: 1873–1882.Google Scholar
  25. King, J. R., B. Shuter & P. Zimmerman, 1999. Signals of climate trends and extreme events in the thermal stratification pattern of multibasin lake Opeongo, Ontario. Canadian Journal of Fisheries and Aquatic Sciences 56: 847–852.CrossRefGoogle Scholar
  26. Langenberg, V. T., 1996. The physical limnology of lake Tanganyika, August–December 1995. FAO/FINNIDA Research for the Management of Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/54: 63 pp.Google Scholar
  27. Langenberg, V. T., J. Sarvala & R. Roijackers, 2003. Effect of wind induced water movements on nutrients, chlorophyll-a, and primary production in Lake Tanganyika. Aquatic Ecosystem Health and Management 6(3): 279–288.CrossRefGoogle Scholar
  28. Livingstone, D. A., 2003. Global climate change strikes a tropical lake. Science 25: 468–469.CrossRefGoogle Scholar
  29. Magnuson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, D. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler, & F. H. Quinn, 1997. Potential effects of climate change on aquatic systems: Laurentian great lakes and Precambrian shield region: 7–53. In Cushing, C. E. (ed.), Freshwater Ecosystems and Climate Change in North America: A Regional Assessment. Advances in Hydrological Processes. Wiley, New York: 262 pp.Google Scholar
  30. Moore, M. V., S. E. Hampton, L. R. Izmest’eva, E. A. Silow, E. V. Peshkova & B. K. Pavlov, 2009. Climate change and the world’s “Sacred Sea”-Lake Baikal, Siberia. BioScience 59: 405–417.CrossRefGoogle Scholar
  31. Mortsch, L. D. & F. H. Quinn, 1996. Climate change scenarios for Great Lakes Basin ecosystem studies. Limnology and Oceanography 41: 903–911.CrossRefGoogle Scholar
  32. Naithani, J., E. Deleersnijder & P-.D. Plisnier, 2002. Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters, 29. doi: 10.1029/2002GL015843.
  33. Naithani, J., E. Deleersnijder & P.-D. Plisnier, 2003. Analysis of wind-induced thermocline oscillations of Lake Tanganyika. Environmental Fluid Mechanics 3: 23–39.CrossRefGoogle Scholar
  34. Naithani, J., F. Darchambeau, E. Deleersnijder, J.-P. Descy & E. Wolanski, 2007a. Study of the nutrient and plankton dynamics in Lake Tanganyika using a reduced-gravity model. Ecological Modelling 200: 225–233.CrossRefGoogle Scholar
  35. Naithani, J., P.-D. Plisnier & E. Deleersnijder, 2007b. A simple model of the eco-hydrodynamics of the epilimnion of Lake Tanganyika. Freshwater Biology 52: 2087–2100.CrossRefGoogle Scholar
  36. NCEP (National Centres for Environmental Protection). The NCEP/NCAR reanalysis project [available on internet at].
  37. O’Reilly, C. M., S. R. Alin, P.-D. Plisnier, A. S. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.PubMedCrossRefGoogle Scholar
  38. Ogutu-Ohwayo, R., R. E. Hecky, A. S. Cohen & L. Kaufman, 1997. Human impacts on the African Great Lakes. Environmental Biology of Fishes 50: 117–131.CrossRefGoogle Scholar
  39. Pham, S. V., P. R. Leavitt, S. McGowan & P. Peres-Nato, 2008. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnology and Oceanography 53: 728–742.CrossRefGoogle Scholar
  40. Plisnier, P.-D. & E. C. Coenen, 2001. Pulsed and dampened annual limnological fluctuations in Lake Tanganyika. In Munawar, M. & R. Hecky (eds), The Great Lakes of the World (GLOW): Food-web, Health and Integrity. Ecovision World Monograph Series, Leiden, The Netherlands: 81–94.Google Scholar
  41. Plisnier, P. D. & J.-P. Descy, 2005. Climlake: Climate Variability as Recorded in Lake Tanganyika. Final Report (2001–2005). FSPO-Global Change, Ecosystems and Biodiversity: 105 pp.Google Scholar
  42. Plisnier, P. D., V. Langenberg, L. Mwape, D. Chitamwebwa, K. Tshibangu & E. J. Coenen, 1996. Limnological Sampling During an Annual Cycle at Three Stations on Lake Tanganyika (1993–1994). FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/46 (En): 124 pp.Google Scholar
  43. Plisnier, P.-D., D. Chitamwebwa, L. Mwape, K. Tshibangu, V. Langenberg & E. Coenen, 1999. Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407: 45–58.CrossRefGoogle Scholar
  44. Price, J. F., 1979. On the scaling of stress-driven entrainment experiments. Journal of Fluid Mechanics 90: 509–529.CrossRefGoogle Scholar
  45. Reynolds, J. E. & H. Molsa, 2000. Lake Tanganyika Regional Fisheries Programme (TREFIP). Environment Impact Assessment Report. FAO, Rome: 24.Google Scholar
  46. Sarvala, J., V. T. Langenberg, K. Salonen, D. Chitamwebwa, G. W. Coulter, T. Huttula, R. Kanyaru, P. Kotilainen, L. Makasa, N. Mulimbwa & H. Mölsä, 2006. Fish catches from Lake Tanganyika mainly reflect changes in fishery practices, not climate. Verhandlungen des Internationalen Verein Limnologie 29: 1182–1188.Google Scholar
  47. Schep, S. A., G. N. J. Ter Heerdt, J. H. Janse & M. Ouboter, 2007. Possible effects of climate change on ecological functioning of shallow lakes, Lake Loenderveen as a case study. Annals of Warsaw University of Life Science-SGGW, Land Reclamation 38: 95–104.CrossRefGoogle Scholar
  48. Schindler, D. W., K. G. Beaty, E. J. Fee, D. R. Cruikshank, E. R. DeBruyn, D. L. Findlay, G. A. Linsey, J. A. Shearer, M. P. Stainton & M. A. Turner, 1990. Effects of climatic warming on the lakes of the central boreal forest. Science 250: 967–969.PubMedCrossRefGoogle Scholar
  49. Schindler, D. W., E. B. Suzanne, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climatic warming on the properties of boreal lakes and streams at the experimental lakes area, northwestern Ontario. Limnology and Oceanography 41: 1004–1017.CrossRefGoogle Scholar
  50. Smol, J. P. & M. S. V. Douglas, 2007. From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Frontiers in Ecology and the Environment 5: 466–474.CrossRefGoogle Scholar
  51. Stefan, H. G., M. Hondzo & X. Fang, 1993. Lake water quality modelling for projected future climate scenarios. J Environ Qual 22: 417–431.CrossRefGoogle Scholar
  52. Stenuite, S., S. Pirlot, M.-A. Hardy, H. Sarmento, A.-L. Tarbe, B. Leporcq & J.-P. Descy, 2007. Phytoplankton production and growth rate in Lake Tanganyika: evidence of a decline in primary productivity in recent years. Freshwater Biology 52: 2226–2239.CrossRefGoogle Scholar
  53. Tierney, J. E., M. T. Mayes, N. Meyer, C. Johnson, P. W. Swarzenski, A. S. Cohen & J. M. Russell, 2010. Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nature Geoscience. doi: 10.1038/ngeo865.
  54. UNDP/GEF, 2008. Partnership Interventions for the Implementation of the Strategic Action Programme for Lake Tanganyika. Governments of Burundi, D.R.Congo, Tanzania and Zambia. Project Document: Part One UNOPS Components: 90 pp.Google Scholar
  55. Verburg, P. & R. E. Hecky, 2009. The physics of warming of Lake Tanganyika by climate change. Limnology and Oceanography 54: 2418–2430.CrossRefGoogle Scholar
  56. Verburg, P., R. E. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507.PubMedCrossRefGoogle Scholar
  57. Vollmer, M. K., H. A. Bootsma, R. E. Hecky, G. Patterson, J. D. Halfman, J. M. Edmond, D. H. Eccles & R. F. Weiss, 2005. Deep-water warming trend in Lake Malawi, East Africa. Limnology and Oceanography 50: 727–732.CrossRefGoogle Scholar
  58. Wetzel, R. G., 1983. Limnology, 2nd ed. CBS College Publishing, New York: 767 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jaya Naithani
    • 1
    • 2
    Email author
  • Pierre-Denis Plisnier
    • 3
  • Eric Deleersnijder
    • 1
    • 4
  1. 1.Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC)Louvain-la-NeuveBelgium
  2. 2.G. Lemaître Centre for Earth and Climate Research (TECLIM)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Royal Museum for Central AfricaTervurenBelgium
  4. 4.Earth and Life Institute (ELI), G. Lemaître Centre for Earth and Climate Research (TECLIM)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations