Skip to main content

Physical and chemical properties determine zebra mussel invasion success in lakes

Abstract

To address the question whether the abundance of an invasive species can be explained by physical and chemical properties of the invaded ecosystems, we gathered density data of invasive zebra mussels and the physical and chemical data of ecosystems they invaded. We assembled published data from 55 European and 13 North American lakes and developed a model for zebra mussel density using a generalized additive model (GAM) approach. Our model revealed that the joint effect of surface area, total phosphorus and calcium concentrations explained 62% of the variation in Dreissena density. Our study indicates that large and less productive North American lakes can support larger local populations of zebra mussels. Our results suggest that the proliferation of an exotic species in an area can partially be explained by physical and chemical properties of the recipient environment.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Burlakova, L. E., A. Y. Karatayev & D. K. Padilla, 2006. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. Hydrobiologia 571: 133–146.

    Article  Google Scholar 

  2. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  3. Colautti, R. I. & H. J. MacIsaac, 2004. A neutral terminology to define invasive species. Diversity and Distribution 10: 135–141.

    Article  Google Scholar 

  4. Colautti, R. I., A. Ricciardi, I. A. Grigorovich & H. J. MacIsaac, 2004. Is invasion success explained by the enemy release hypothesis? Ecology Letters 7: 721–733.

    Article  Google Scholar 

  5. Colautti, R. I., I. A. Grigorovich & H. J. MacIsaac, 2006. Propagule pressure: a null model for biological invasions. Biological Invasions 8: 1023–1037.

    Article  Google Scholar 

  6. Elton, C. S., 1958. The Ecology of Invasion by Animals and Plants. Methuen, London.

    Google Scholar 

  7. Freeman, A. S. & J. E. Byers, 2006. Divergent induced responses to an invasive predator in marine mussel populations. Science 313: 831–833.

    PubMed  Article  CAS  Google Scholar 

  8. Goedkoop, W., R. Naddafi & U. Grandin, 2011. Retention of N and P by zebra mussels (Dreissena polymorpha Pallas) and its quantitative role in the nutrient budget of eutrophic Lake Ekoln, Sweden. Biological Invasions. doi:10.1007/s10530-011-9950-9.

  9. Graham, M. H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809–2815.

    Article  Google Scholar 

  10. Hallstan, S., U. Grandin & W. Goedkoop, 2010. Current and modeled potential distribution of the zebra mussel (Dreissena polymorpha) in Sweden. Biological Invasions 12: 285–296.

    Article  Google Scholar 

  11. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.

    Google Scholar 

  12. Havel, J. E., J. B. Shurin & J. R. Jones, 2005. Environmental limits to a rapidly spreading exotic cladoceran. Ecoscience 12: 376–385.

    Article  Google Scholar 

  13. Hincks, S. S. & G. L. Mackie, 1997. Effects of pH, calcium, alkalinity, hardness, and chlorophyll on the survival, growth, and reproductive success of zebra mussel (Dreissena polymorpha) in Ontario lakes. Canadian Journal of Fisheries and Aquatic Science 54: 2049–2057.

    Article  CAS  Google Scholar 

  14. Hunter, R. D. & K. A. Simons, 2004. Dreissenids in Lake St. Clair in 2001: evidence for population regulation. Journal of Great Lakes Research 30: 528–537.

    Article  Google Scholar 

  15. Jeschke, J. M. & D. L. Strayer, 2008. Usefulness of bioclimatic models for studying climate change and invasive species. In Ostfeld, R. S. & W. H. Schlesinger (eds), The Year in Ecology and Conservation Biology, Annals of the New York Academy of Sciences, Vol. 1134. Blackwell Scientific Publishing, Boston: 1–24.

    Google Scholar 

  16. Johnson, L. E., A. Ricciardi & J. T. Carlton, 2001. Overland dispersal of aquatic invasive species: a risk assessment of transient recreational boating. Ecological Applications 11: 1789–1799.

    Article  Google Scholar 

  17. Jones, L. A. & A. Ricciardi, 2005. Influence of physical and chemical factors on the distribution and biomass of invasive mussels (Dreissena polymorpha and Dreissena bugensis) in the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 62: 1953–1962.

    Article  CAS  Google Scholar 

  18. Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. Journal of Shellfish Research 16: 187–203.

    Google Scholar 

  19. Karatayev, A. Y., L. E. Burlakova, D. P. Molloy & L. K. Volkova, 2000. Endosymbionts of Dreissena polymorpha (Pallas) in Belarus. International Review of Hydrobiology 85: 543–559.

    Article  Google Scholar 

  20. Kennedy, T. A., S. Naeem, K. M. Howe, J. M. H. Knops, D. Tilman & P. Relch, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636–638.

    PubMed  Article  CAS  Google Scholar 

  21. Kerney, M. P. & B. S. Morton, 1970. The distribution of Dreissena polymorpha in Britain. Journal of Conchology 27: 97–100.

    Google Scholar 

  22. Kolar, C. & D. M. Lodge, 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199–204.

    PubMed  Article  Google Scholar 

  23. Kornobis, S., 1977. Ecology of Dreissena polymorpha (Pal.) (Dreissena: Bivalvia) in lakes receiving heated water discharges. Polskie Archiwum Hydrobiologii 24: 531–545.

    Google Scholar 

  24. Kraft, C. E. & L. E. Johnson, 2000. Regional differences in rates and patterns of North American inland lake invasions by zebra mussels (Dreissena polymorpha). Canadian Journal of Fisheries and Aquatic Science 5: 993–1001.

    Article  Google Scholar 

  25. Levine, J. M. & C. M. D’Antonio, 1999. Elton revisited: a review of evidence linking diversity and invisibility. Oikos 87: 15–26.

    Article  Google Scholar 

  26. López-Moreno, J. I. & D. Nogués-Bravo, 2005. A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees. Hydrological Processes 19: 3167–3176.

    Article  Google Scholar 

  27. Lucy, F., M. Sullivan & D. Minchin, 2005. Nutrient levels and the zebra mussel population in Lough Key. ERTDI Report Series No. 34. EPA, Wexford.

  28. MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.

    Google Scholar 

  29. Mackie, G. L. & D. W. Schloesser, 1996. Comparative biology of zebra mussels in Europe and North America: an overview. American Zoologist 36: 244–258.

    Google Scholar 

  30. Marsden, J. E., A. P. Spidle & B. May, 1996. Review of genetic studies of Dreissena spp. American Zoologist 36: 259–270.

    Google Scholar 

  31. McMahon, R. F., 1996. The physiological ecology of the zebra mussel, Dreissena polymorpha, in North America and Europe. American Zoologist 36: 339–363.

    Google Scholar 

  32. Mellina, E. & J. B. Rasmussen, 1994. Patterns in the distribution and abundance of zebra mussel (Dreissena polymorpha) in rivers and lakes in relation to substrate and other physical and chemical factors. Canadian Journal of Fisheries and Aquatic Science 51: 1024–1036.

    Article  Google Scholar 

  33. Mellina, E., J. B. Rasmussen & E. L. Mills, 1995. Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2553–2573.

    Article  CAS  Google Scholar 

  34. Naddafi, R., P. Eklöv & K. Pettersson, 2007a. Non-lethal predator effects on the feeding rate and prey selection of the exotic zebra mussel Dreissena polymorpha. Oikos 116: 1289–1298.

    Article  Google Scholar 

  35. Naddafi, R., K. Pettersson & P. Eklöv, 2007b. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology 52: 823–842.

    Article  Google Scholar 

  36. Naddafi, R., K. Pettersson & P. Eklöv, 2008. Effects of the zebra mussel, an exotic freshwater species, on seston stoichiometry. Limnology and Oceanography 53: 1973–1987.

    Article  CAS  Google Scholar 

  37. Naddafi, R., P. Eklöv & K. Pettersson, 2009. Stoichiometric constraints do not limit successful invaders: zebra mussels in Swedish lakes. PLoS ONE 4: e5345.

    PubMed  Article  Google Scholar 

  38. Naddafi, R., K. Pettersson & P. Eklöv, 2010. Predation and physical environment structure the density and population size structure of zebra mussels. Journal of the North American Benthological Society 29: 444–453.

    Article  Google Scholar 

  39. Pearce, J. & S. Ferrier, 2000. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling 128: 127–147.

    Article  Google Scholar 

  40. Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Google Scholar 

  41. Ram, J. L. & R. F. McMahon, 1996. Introduction: the biology, ecology, and physiology of zebra mussels. American Zoologist 36: 239–243.

    Google Scholar 

  42. Ramcharan, C. W., D. K. Padilla & S. I. Dodson, 1992a. Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Science 49: 2611–2620.

    Article  Google Scholar 

  43. Ramcharan, C. W., D. K. Padilla & S. I. Dodson, 1992b. A multivariate model for predicting population fluctuations of Dreissena polymorpha in North American Lakes. Canadian Journal of Fisheries and Aquatic Science 49: 150–158.

    Article  Google Scholar 

  44. Ricciardi, A., 2001. Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513–2525.

    Article  Google Scholar 

  45. Ricciardi, A., R. J. Neves & J. B. Rasmussen, 1998. Impending extinctions of North American freshwater mussels (Unionoida) following the Zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology 67: 613–619.

    Article  Google Scholar 

  46. Shurin, J. B., 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074–3086.

    Article  Google Scholar 

  47. Simberloff, D. & B. Von Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.

    Article  Google Scholar 

  48. Sprung, M., 1993. The other life: an account of present knowledge of the larval phase of Dreissena polymorpha. In Nalepa, T. F. & D. W. S. Schloesser (eds), Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, Boca Raton, FL: 39–53.

    Google Scholar 

  49. Stańczykowska, A., 1964. On the relationship between abundance, aggregations and “condition” of Dreissena polymorpha Pall. in 36 Mazurian lakes. Ekologiya Polska Series A 12: 653–690.

    Google Scholar 

  50. Stańczykowska, A., 1984. The effect of various phosphorus loadings on the occurrence of Dreissena polymorpha (Pall.). Limnologica 15: 535–539.

    Google Scholar 

  51. Stańczykowska, A. & K. Lewandowski, 1993. Thirty years of studies of Dreissena polymorpha ecology in Mazurian Lakes of Northeastern Poland. In Nalepa, T. F. & D. W. Schloesser (eds), Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, Ann Arbor, MI: 3–33.

    Google Scholar 

  52. Stańczykowska, A., E. Jurkiewicz-Karnowska & K. Lewandowski, 1983. Ecological characteristics of lakes in north-eastern Poland versus their trophic gradient. X. Occurrence of molluscs in 42 lakes. Ekologiya Polska 31: 459–479.

    Google Scholar 

  53. Stepien, C. A., C. D. Taylor & K. A. Dabrowska, 2002. Genetic variability and phylogeographical patterns of a nonindigenous species invasion: a comparison of exotic vs. native zebra and quagga mussel populations. Journal of Evolutionary Biology 15: 314–328.

    Article  CAS  Google Scholar 

  54. Strayer, D. L., 1991. The projected distribution of the zebra mussel, Dreissena polymorpha, in North America. Canadian Journal of Fisheries and Aquatic Sciences 48: 1389–1395.

    Article  Google Scholar 

  55. Strayer, D. L., J. Powell, P. Ambrose, L. C. Smith, M. L. Pace & D. T. Fischer, 1996. Arrival, spread, and early dynamics of a zebra mussel (Dreissena polymorpha) population in the Hudson River Estuary. Canadian Journal of Fisheries and Aquatic Science 53: 1143–1149.

    Google Scholar 

  56. Strayer, D. L., V. T. Eviner, J. M. Jeschke & M. L. Pace, 2006. Understanding the long-term effects of species invasions. Trends in Ecology and Evolution 21: 645–651.

    PubMed  Article  Google Scholar 

  57. Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Science 59: 1209–1228.

    Article  Google Scholar 

  58. Ward, J. M. & A. Ricciardi, 2007. Impacts of Dreissena invasions on benthic macroinvertebrate communities: a metaanalysis. Diversity and Distribution 13: 155–165.

    Article  Google Scholar 

  59. Whittier, T. R., P. L. Ringold, A. T. Herlihy & S. M. Pierson, 2008. A calcium-based invasion risk assessment for zebra and quagga mussels (Dreissena spp.). Frontiers in Ecology and the Environment 6: 180–184.

    Article  Google Scholar 

  60. Wilson, A. E. & O. Sarnelle, 2002. Relationship between zebra mussel biomass and total phosphorus in European and North American lakes. Archiv für Hydrobiologie 153: 339–351.

    CAS  Google Scholar 

  61. Zhu, B., D. G. Fitzgerald, C. M. Mayer, L. G. Rudstam & E. L. Mills, 2006. Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes. Ecosystems 9: 1017–1028.

    Article  Google Scholar 

  62. Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing Ecological Data. Springer-Verlag, New York: 685.

    Google Scholar 

  63. http://www.epa.ie/downloads/pubs/research/water/epa_zebra_mussels_ertdi34_synthesis.pdf.

Download references

Acknowledgments

We are grateful to Tomasz Muller, Marcin Czarnołęski, Anna Stańczykowska, Peter Stangel, Frances Lucy, Kristen Holeck, Lyubov E. Burlakova, Alexander Y. Karatayev, James Haynes, Ruurd Noordhuis, Chuck Madenjian, Guy Fleischer, Ellen Marsden, Robert Douglas Hunter, Miguel Dionisio Pires, Joseph C. Makarewicz and Joe Ho for help in providing the data. We also thank Drs. Lars Rudstam, Luis M. Bini and Edward Mills for their many constructive comments that improved this paper. This research was funded by The Swedish Research Council and the Malméns Foundation to Rahmat Naddafi and The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning to Peter Eklöv.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rahmat Naddafi.

Additional information

Handling editor: Luis Mauricio Bini

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 267 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naddafi, R., Blenckner, T., Eklöv, P. et al. Physical and chemical properties determine zebra mussel invasion success in lakes. Hydrobiologia 669, 227–236 (2011). https://doi.org/10.1007/s10750-011-0689-1

Download citation

Keywords

  • Invasion success
  • Zebra mussel
  • Density
  • Generalized additive model
  • Physical and chemical properties
  • North American and European lakes