Advertisement

Hydrobiologia

, Volume 670, Issue 1, pp 5–22 | Cite as

Ontogenetic allometry of the bluemouth, Helicolenus dactylopterus dactylopterus (Teleostei: Scorpaenidae), in the Northeast Atlantic and Mediterranean based on geometric morphometrics

  • Rebeca Rodríguez-MendozaEmail author
  • Marta Muñoz
  • Fran Saborido-Rey
Ecosystems and Sustainability

Abstract

The bluemouth, Helicolenus dactylopterus, is a deep-sea scorpionfish widely distributed in the Atlantic Ocean and the Mediterranean. It is a common by-catch associated to many demersal fisheries. However, there is little information about the stock structure, stock dynamics and life history parameters of the bluemouth. From the perspective of stock identification, it is important to study growth in fish populations to better understand the possible morphological differences among populations and when and why do they arise. Thus, the aim of this study was to determine the growth (allometric) trajectories of shape for several bluemouth populations in Northeast Atlantic and Mediterranean using landmark-based geometric morphometric techniques. In this study, ontogenetic allometry was present in all of the bluemouth samples. Ontogenetic shape changes were most evident in the head and pectoral area, affecting the position of the snout, preopercular spines and pectoral fins, but changes in body depth and length were also important. However, the degree to which these ontogenetic shape changes were present in bluemouth from each of the studied areas was different, indicating that their growth trajectories are not homogeneous. The importance of this finding for size-correction of the shape variables in morphometric studies for stock identification is also discussed.

Keywords

Helicolenus dactylopterus Bluemouth Morphometrics Growth Ontogenetic allometry 

Notes

Acknowledgments

RRM’s work was funded by a Marie Curie fellowship from the Early Stage Training site ECOSUMMER (MEST-CT-2005-020501) and a CONACyT-Mexico scholarship. This research was also supported by the project CTM2006-13964-C03-00 of the Spanish Ministry of Science and Innovation. We would like to thank the anonymous reviewers whose comments and suggestions helped to improve this manuscript.

References

  1. Abad, E., I. Preciado, A. Serrano & J. Baro, 2007. Demersal and epibenthic assemblages of trawlable grounds in the northern Alboran Sea (western Mediterranean). Scientia Marina 71: 513–524.CrossRefGoogle Scholar
  2. Abecasis, D., A. R. Costa, J. G. Pereira & M. R. Pinho, 2006. Age and growth of bluemouth, Helicolenus dactylopterus (Delaroche, 1809) from the Azores. Fisheries Research 79: 148–154.CrossRefGoogle Scholar
  3. Abelló, P., A. Carbonell & P. Torres, 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Scientia Marina 66: 183–198.Google Scholar
  4. Aboim, M. A., G. M. Menezes, T. Schlitt & A. D. Rogers, 2005. Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Molecular Ecology 14: 1343–1354.PubMedCrossRefGoogle Scholar
  5. Alberch, P., S. J. Gould, G. F. Oster & D. B. Wake, 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–317.Google Scholar
  6. Allain, V., 2001. Reproductive strategies of three deep-water benthopelagic fishes from the northeast Atlantic Ocean. Fisheries Research 51: 165–176.CrossRefGoogle Scholar
  7. Barlow, G. W., 1961. Causes and significance of morphological variation in fishes. Systematic Zoology 10: 105–117.CrossRefGoogle Scholar
  8. Begg, G. A., 2005. Life history parameters. In Cadrin, S. X., K. D. Friedland & J. R. Waldman (eds), Stock Identification Methods: Applications in Fishery Science. Elsevier Academic Press, San Diego, CA: 119–150.CrossRefGoogle Scholar
  9. Blaber, S. J. M. & C. M. Bulman, 1987. Diets of fishes of the upper continental slope of eastern Tasmania: content, calorific values, dietary overlap and trophic relationships. Marine Biology 95: 345–356.CrossRefGoogle Scholar
  10. Bookstein, F. L., 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 567–585.CrossRefGoogle Scholar
  11. Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.Google Scholar
  12. Borges, L., E. Rogan & R. Officer, 2005. Discarding by the demersal fishery in the waters around Ireland. Fisheries Research 76: 1–13.CrossRefGoogle Scholar
  13. Burnaby, T. P., 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96–110.CrossRefGoogle Scholar
  14. Cadrin, S. X., 2000. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10: 91–112.CrossRefGoogle Scholar
  15. Cadrin, S. X., 2005. Morphometric landmarks. In Cadrin, S. X., K. D. Friedland & J. R. Waldman (eds), Stock Identification Methods: Applications in Fishery Science. Elsevier Academic Press, San Diego, CA: 153–172.CrossRefGoogle Scholar
  16. Cartes, J. E., A. Serrano, F. Velasco, S. Parra & F. Sanchez, 2007. Community structure and dynamics of deep-water decapod assemblages from Le Danois Bank (Cantabrian Sea, NE Atlantic): influence of environmental variables and food availability. Progress in Oceanography 75: 797–816.CrossRefGoogle Scholar
  17. Claytor, R. R. & H. R. MacCrimmon, 1987. Partitioning size from morphometric data: a comparison of five statistical procedures used in fisheries stock identification research. Canadian Technical Report of Fisheries and Aquatic Services No. 1531.Google Scholar
  18. Czerwinski, I. A., J. C. Gutiérrez-Estrada, M. C. Soriguer & J. A. Hernando, 2008. Morphometric relations for body size and mouth dimensions for four fish species in the Strait of Gibraltar. Acta Ichthyologica et Piscatoria 38: 81–90.CrossRefGoogle Scholar
  19. Demestre, M., P. Sánchez & P. Abelló, 2000. Demersal fish assemblages and habitat characteristics on the continental shelf and upper slope of the north-western Mediterranean. Journal of the Marine Biological Association of the United Kingdom 80: 981–988.CrossRefGoogle Scholar
  20. Drake, A. G. & C. P. Klingenberg, 2008. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B 275: 71–76.PubMedCrossRefGoogle Scholar
  21. Dryden, I. L. & K. V. Mardia, 1998. Statistical Shape Analysis. John Wiley & Sons, New York.Google Scholar
  22. Esteves, E., J. Aníbal, H. Krug & H. Marques da Silva, 1997. Aspects of age and growth of bluemouth, Helicolenus dactylopterus dactylopterus (Delaroche, 1809) from the Azores. Arquipélago. Life and Marine Sciences 15A: 83–95.Google Scholar
  23. Fariña, A. C., J. Freire & E. González-Gurriarán, 1997. Megabenthic decapod crustacean assemblages on the Galician continental shelf and upper slope (north-west Spain). Marine Biology 127: 419–434.CrossRefGoogle Scholar
  24. Frost, S. R., L. F. Marcus, F. L. Bookstein, D. P. Reddy & E. Delson, 2003. Cranial allometry, phylogeography and systematics of large-bodied papionins (Primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. Anatomical Record 275: 1048–1072.PubMedCrossRefGoogle Scholar
  25. Furlani, D. M., 1997. Development and ecology of ocean perch larvae, Helicolenus percoides (Richardson, 1842) (Pisces: Scorpaenidae), from southern Australian waters, with notes on the larvae of other sympatric scorpaenid genera. Marine and Freshwater Research 48: 311–320.CrossRefGoogle Scholar
  26. Garabana, D., 2005. The genus Sebastes Cuvier, 1829 (Pisces, Scorpaenidae) in the North Atlantic: species and stock discrimination using traditional and geometric morphometrics. PhD Thesis, University of Vigo, Spain.Google Scholar
  27. García-Lafuente, J., 2006. Topical studies in oceanography: the Gulf of Cadiz oceanography: a multidisciplinary view. Deep Sea Research Part II 53: 1141–1143.CrossRefGoogle Scholar
  28. García-Lafuente, J., J. Delgado, F. Criado-Aldeanueva, M. Bruno, J. del Río & J. Miguel Vargas, 2006. Water mass circulation on the continental shelf of the Gulf of Cadiz. Deep Sea Research Part II 53: 1182–1197.CrossRefGoogle Scholar
  29. Gidaszewski, N. A., M. Baylac & C. P. Klingenberg, 2009. Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evolutionary Biology 9: 110.PubMedCrossRefGoogle Scholar
  30. Good, P., 1994. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. Springer, New York.Google Scholar
  31. Hayes, D. B., C. P. Ferreri & W. Taylor, 1996. Linking fish habitat to their population dynamics. Canadian Journal of Fisheries and Aquatic Sciences 53: 383–390.CrossRefGoogle Scholar
  32. Heessen, H. J. L., J. R. G. Hislop & T. W. Boon, 1996. An invasion of the North Sea by blue-mouth, Helicolenus dactylopterus (Pisces, Scorpaenidae). ICES Journal of Marine Sciences 53: 874–877.CrossRefGoogle Scholar
  33. Humphries, J. M., Jr., F. L. Bookstein, B. Chernoff, G. R. Smith, R. L. Elder & S. G. Poss, 1981. Multivariate discrimination by shape in relation to size. Systematic Zoology 30: 291–308.CrossRefGoogle Scholar
  34. Ihssen, P. E., H. E. Booke, J. M. Casselman, J. M. McGlade, N. R. Payne & F. M. Utter, 1981. Stock identification: materials and methods. Canadian Journal of Fisheries and Aquatic Sciences 38: 1838–1855.CrossRefGoogle Scholar
  35. Jolicoeur, P., 1963. The multivariate generalization of the allometry equation. Biometrics 19: 497–499.CrossRefGoogle Scholar
  36. Karpouzi, V. S. & K. I. Stergiou, 2003. The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. Journal of Fish Biology 62: 1353–1365.CrossRefGoogle Scholar
  37. Kelly, C. J., P. L. Connolly & J. J. Bracken, 1999. Age estimation, growth, maturity, and distribution of the bluemouth rockfish Helicolenus d. dactylopterus (Delaroche 1809) from the Rockall Trough. ICES Journal of Marine Science 56: 61–74.CrossRefGoogle Scholar
  38. Kitano, J., S. Mori & C. Peichel, 2007. Sexual dimorphism in the external morphology of the threespine stickleback (Gasterosteus aculeatus). Copeia 2: 336–349.CrossRefGoogle Scholar
  39. Klingenberg, C. P., 1996. Multivariate allometry. In Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor & D. E. Slice (eds), Advances in Morphometrics. Plenum Press, New York: 23–49.Google Scholar
  40. Klingenberg, C. P., 2008. MorphoJ Software/Documentation. Version 1.00i. Faculty of Life Sciences, University of Manchester, UK. http://www.flywings.org.uk/MorphoJ_page.htm.
  41. Klingenberg, C. P. & R. Froese, 1991. A multivariate comparison of allometric growth patterns. Systematic Zoology 40: 410–419.CrossRefGoogle Scholar
  42. Kouttouki, S., E. Georgakopoulou, P. Kaspiris, P. Divanach & G. Koumoundouros, 2006. Shape ontogeny and variation in the sharpsnout seabream, Diplodus puntazzo (Cetti 1777). Aquaculture Research 37: 655–663.CrossRefGoogle Scholar
  43. Law, R., 2000. Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science 57: 659–669.CrossRefGoogle Scholar
  44. Loy, A., S. Cataudella & M. Corti, 1996. Shape changes during the growth of the sea bass, Dicentrarchus labrax (Teleostei: Perciformes), in relation to different rearing conditions. In Marcus, L. F., M. Corti, A. Loy, G. J. P. Naylor & D. E. Slice (eds), Advances in Morphometrics. Plenum Press, New York: 399–405.Google Scholar
  45. Loy, A., L. Mariani, M. Bertelletti & L. Tunesi, 1998. Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two-banded sea bream, Diplodus vulgaris (Perciformes, Sparidae). Journal of Morphology 237: 137–146.CrossRefGoogle Scholar
  46. Macpherson, E., 1979. Estudio sobre el régimen alimentario de algunos peces en el Mediterráneo occidental. Miscelánea Zoológica 5: 93–107.Google Scholar
  47. Macpherson, E., 1985. Daily ration and feeding periodicity of some fishes off the coast of Namibia. Marine Ecology Progress Series 26: 253–260.CrossRefGoogle Scholar
  48. Mamie, J. C. J., D. J. Beare, E. G. Jones, M. Kienzle, H. Dobby, M. R. Heath & D. G. Reid, 2007. Aspects of the distribution and growth of bluemouth (Helicolenus dactylopterus, Delaroche 1809) since its invasion of the northern North Sea in 1991. Fisheries Oceanography 16: 85–94.CrossRefGoogle Scholar
  49. Massutí, E., B. Morales-Nin & J. Moranta, 2000. Age and growth of blue-mouth, Helicolenus dactylopterus (Osteichthyes: Scorpaenidae), in the western Mediterranean. Fisheries Research 46: 165–176.CrossRefGoogle Scholar
  50. Massutí, E., J. Moranta, L. Gil de Sola, B. Morales-Nin & L. Prats, 2001. Distribution and population structure of the rockfish Helicolenus dactylopterus (Pisces: Scorpaenidae) in the western Mediterranean. Journal of the Marine Biological Association of the United Kingdom 81: 129–141.CrossRefGoogle Scholar
  51. Massutí, E., J. Gordon, J. Morata, S. Swan, C. Stefanescu & N. Merrett, 2004. Mediterranean and Atlantic deep-sea fish assemblages: differences in biomass composition and size-related structure. Scientia Marina 68: 101–115.CrossRefGoogle Scholar
  52. Mendonça, A., E. Isidro, G. Menezes, M. Rui Pinho, O. Melo & S. Estácio, 2006. New contribution to the reproductive features of bluemouth Helicolenus dactylopterus dactylopterus from northeast Atlantic (Azores Archipelago). Scientia Marina 70: 679–688.CrossRefGoogle Scholar
  53. Mitteroecker, P., P. Gunz, M. Bernhard, K. Schaefer & F. L. Bookstein, 2004. Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46: 679–698.PubMedCrossRefGoogle Scholar
  54. Moranta, J., E. Massutí & B. Morales-Nin, 2000. Fish catch composition of the deep-sea decapod crustacean fisheries in the Balearic Islands (western Mediterranean). Fisheries Research 45: 253–264.CrossRefGoogle Scholar
  55. Mosimann, J. E., 1970. Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65: 930–945.CrossRefGoogle Scholar
  56. Muñoz, M., M. Casadevall & S. Bonet, 1999. Annual reproductive cycle of Helicolenus dactylopterus dactylopterus (Teleostei: Scorpaeniformes) with special reference to the ovaries sperm storage. Journal of the Marine Biological Association of the United Kingdom 79: 521–529.CrossRefGoogle Scholar
  57. Muñoz M., M. Casadevall, S. Bonet & I. Quagio-Grassiotto, 2000. Sperm storage structures in the ovary of Helicolenus dactylopterus dactylopterus (Teleostei: Scorpaenidae): An ultrastructural study. Environmental Biology of Fishes 58: 53–59.Google Scholar
  58. Nouar, A. & C. Maurin, 2000. Régime alimentaire de Helicolenus dactylopterus dactylopterus (Pisces: Scorpaenidae) des fonds chalutables des côtes algériennes. Cahiers de Biologie Marine 41: 313–320.Google Scholar
  59. Paul, L. J. & P. L. Horn, 2009. Age and growth of sea perch (Helicolenus percoides) from two adjacent areas off the east coast of South Island, New Zealand. Fisheries Research 95: 169–180.CrossRefGoogle Scholar
  60. Ribas, D., M. Muñoz, M. Casadevall & L. Gil de Sola, 2006. How does the northern Mediterranean population of Helicolenus dactylopterus dactylopterus resist fishing pressure? Fisheries Research 79: 285–293.CrossRefGoogle Scholar
  61. Rochet, M. J., 1998. Short-term effects of fishing on life history traits of fishes. ICES Journal of Marine Science 55: 371–391.CrossRefGoogle Scholar
  62. Rohlf, F. J., 1990. Morphometrics. Annual Review of Ecology and Systematics 21: 299–316.CrossRefGoogle Scholar
  63. Rohlf, F. J., 1999. Shape statistics: Procrustes superimpositions and tangent spaces. Journal of Classification 16: 197–223.CrossRefGoogle Scholar
  64. Rohlf, F. J., 2006. TpsDig. Version 2.10. SUNY, Stony Brook, NY.Google Scholar
  65. Rohlf, F. J. & F. L. Bookstein, 1987. A Comment on shearing as a method for “size correction”. Systematic Zoology 36: 356–367.CrossRefGoogle Scholar
  66. Rohlf, F. J. & D. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.CrossRefGoogle Scholar
  67. Sánchez, F., 1993. Las comunidades de peces de la plataforma del Cantábrico. Publicaciones Especiales. Instituto Español de Oceanografía 13: 1–137.Google Scholar
  68. Sánchez, F. & J. Gil, 2000. Hydrographic mesoscale structures and poleward current as a determinant of hake (Merluccius merluccius) recruitment in the southern Bay of Biscay. ICES Journal of Marine Science 57: 152–170.CrossRefGoogle Scholar
  69. Sánchez Lizaso, J. L., R. Goñi, O. Reñones, J. A. García Charton, R. Galzin, J. T. Bayle, P. Sánchez Jerez, A. Pérez Ruzafa & A. A. Ramos, 2000. Density dependence in marine protected populations: a review. Environmental Conservation 27: 144–158.CrossRefGoogle Scholar
  70. Sánchez, P., M. Demestre & P. Martín, 2004. Characterisation of the discards generated by bottom trawling in the northwestern Mediterranean. Fisheries Research 67: 71–80.CrossRefGoogle Scholar
  71. Sánchez, F., A. Serrano, F. Sánchez, A. Serrano, S. Parra, M. Ballesteros & J. E. Cartes, 2008. Habitat characteristics as determinant of the structure and spatial distribution of epibenthic and demersal communities of Le Danois Bank (Cantabrian Sea, N. Spain). Journal of Marine Systems 72: 64–86.CrossRefGoogle Scholar
  72. Santos, M. N., M. B. Gaspar, C. C. Monteiro & P. Vasconcelos, 2002. Gill net and long-line catch comparisons in a hake fishery: the case of southern Portugal. Scientia Marina 66: 433–441.CrossRefGoogle Scholar
  73. Sequeira, V., I. Figueiredo, M. Muñoz & L. S. Gordo, 2003. New approach to the reproductive biology of Helicolenus dactylopterus. Journal of Fish Biology 62: 1206–1210.CrossRefGoogle Scholar
  74. Sequeira, V., A. Neves, A. R. Vieira, I. Figueiredo & L. S. Gordo, 2009. Age and growth of bluemouth, Helicolenus dactylopterus, from the Portuguese continental slope. ICES Journal of Marine Science 66: 524–531.CrossRefGoogle Scholar
  75. Serrano, A., F. Velasco, I. Olaso & F. Sánchez, 2003. Macrobenthic crustaceans in the diet of demersal fish in the Bay of Biscay in relation to abundance in the environment. Sarsia 88: 36–48.CrossRefGoogle Scholar
  76. Sheets, H. D., 2000. VecCompare6 Software (Integrated Morphometrics Package Series). Department of Physics, Canisius College, Buffalo, NY.Google Scholar
  77. Slice, D. E., 2001. Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Systematic Biology 50: 141–149.PubMedCrossRefGoogle Scholar
  78. Slice, D. E. & J. Stitzel, 2004. Landmark-based geometric morphometrics and the study of allometry. In S.A.E. Conference on Digital Human Modeling for Design and Engineering (DHM), June, 2004, Oakland University, Rochester, MI. Pub. No.: 04DHM-36.Google Scholar
  79. Stefanescu, C., J. Rucabado & D. Lloris, 1992. Depth-size trends in western Mediterranean demersal deep-sea fishes. Marine Ecology Progress Series 81: 205–213.CrossRefGoogle Scholar
  80. Strauss, R. E. & L. A. Fuiman, 1985. Quantitative comparisons of body form and allometry in larval and adult Pacific sculpins (Teleostei: Cottidae). Canadian Journal of Zoology 63: 1582–1589.CrossRefGoogle Scholar
  81. Swain, D. P., J. A. Hutchings & C. J. Foote, 2005. Environmental and genetic influences on stock identification characters. In Cadrin, S. X., K. D. Friedland & J. R. Waldman (eds), Stock Identification Methods: Applications in Fishery Science. Elsevier Academic Press, San Diego, CA: 45–85.CrossRefGoogle Scholar
  82. Thorpe, R. S., 1976. Biometric analysis of geographic variation and racial affinities. Biological Reviews 51: 407–452.PubMedCrossRefGoogle Scholar
  83. Thorpe, R. S., 1983. Morphometric studies in inbred and hybrid House mice (Mus sp.): multivariate analysis of size and shape. Journal of Zoology 199: 421–432.CrossRefGoogle Scholar
  84. Tortonese, E., 1960. General remarks on the Mediterranean deep-sea fishes. Bulletin de l’Institute Océanographique, Monaco, 1167: 1–4.Google Scholar
  85. Uiblein, F., P. Lorance & D. Latrouite, 2003. Behaviour and habitat utilisation of seven demersal fish species on the Bay of Biscay continental slope, NE Atlantic. Marine Ecology Progress Series 257: 223–232.CrossRefGoogle Scholar
  86. Vila S., M. Sàbat, M. R. Hernandez & M. Muñoz, 2007. Intraovarian sperm storage in Helicolenus dactylopterus dactylopterus: Fertilization, crypt formation and maintenance of stored sperm. The Raffles Bulletin of Zoology 14: 21–27. Google Scholar
  87. Webb, P. W., 1984. Body form, locomotion and foraging in aquatic vertebrates. American Zoologist 24: 107–120.Google Scholar
  88. White, D. B., D. M. Wyanski & G. R. Sedberry, 1998. Age, growth, and reproductive biology of the blackbelly rosefish from the Carolinas, U.S.A. Journal of Fish Biology 53: 1274–1291.CrossRefGoogle Scholar
  89. White, M., C. Mohn, H. de Stitger & G. Mottram, 2005. Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In Freiwald, A. & J. M. Roberts (eds), Cold-water Corals and Ecosystems. Springer Verlag, Berlin: 503–514.CrossRefGoogle Scholar
  90. Whitehead, P. J. P., M. L. Bauchot, J. C. Hureau, J. Nielsen & E. Tortonese, 1986. Fishes of the North-eastern Atlantic and Mediterranean. UNESCO, Paris.Google Scholar
  91. Wimberger, P. H., 1992. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biological Journal of the Linnean Society 45: 197–218.CrossRefGoogle Scholar
  92. Withell, A. F. & J. W. Wankowski, 1988. Estimates of age and growth of ocean perch, Helicolenus percoides (Richardson), in south-eastern Australian waters. Australian Journal of Marine and Freshwater Research 39: 441–457.CrossRefGoogle Scholar
  93. Zelditch, M. L., B. L. Lundrigan, D. H. Sheets & T. Garland, 2003a. Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. Journal of Evolutionary Biology 16: 708–720.PubMedCrossRefGoogle Scholar
  94. Zelditch, M. L., D. H. Sheets & W. L. Fink, 2003b. The ontogenetic dynamics of shape disparity. Paleobiology 29: 139–156.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rebeca Rodríguez-Mendoza
    • 1
    Email author
  • Marta Muñoz
    • 2
  • Fran Saborido-Rey
    • 1
  1. 1.Instituto de Investigaciones MarinasCSICVigoSpain
  2. 2.Departament de Ciències AmbientalsUniversitat de GironaGironaSpain

Personalised recommendations