Hydrobiologia

, Volume 667, Issue 1, pp 255–270 | Cite as

Increased nutrient loading and rapid changes in phytoplankton expected with climate change in stratified South European lakes: sensitivity of lakes with different trophic state and catchment properties

  • Peeter Nõges
  • Tiina Nõges
  • Michela Ghiani
  • Fabrizio Sena
  • Roswitha Fresner
  • Maria Friedl
  • Johanna Mildner
Primary research paper

Abstract

We hypothesised that increasing winter affluence and summer temperatures, anticipated in southern Europe with climate change, will deteriorate the ecological status of lakes, especially in those with shorter retention time. We tested these hypotheses analysing weekly phytoplankton and chemistry data collected over 2 years of contrasting weather from two adjacent stratified lakes in North Italy, differing from each other by trophic state and water retention time. Dissolved oxygen concentrations were higher in colder hypolimnia of both lakes in the second year following the cold winter, despite the second summer was warmer and the lakes more strongly stratified. Higher loading during the rainy winter and spring increased nutrient (N, P, Si) concentrations, and a phytoplankton based trophic state index, whilst the N/P ratio decreased in both lakes. The weakened Si limitation in the second year enabled an increase of diatom biovolumes in spring in both lakes. Chlorophyll a concentration increased in the oligo-mesotrophic lake, but dropped markedly in the eutrophic lake where the series of commonly occurring cyanobacteria blooms was interrupted. The projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients rather than to the retention time, and is more pronounced in lakes with lower trophy.

Keywords

Climate change Anoxia Phosphorus release Silicon limitation Change of dominant species Flushing 

References

  1. Allaby, M., 2007. Encyclopedia of Weather and Climate. Revised Edition. Facts On File, Inc., New York.Google Scholar
  2. Andersen, F. Ø. & P. Ring, 1999. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia 408(409): 175–183.CrossRefGoogle Scholar
  3. Bouraoui, F., B. Grizzetti, G. Adelsköld, H. Behrendt, I. de Miguel, M. Silgram, S. Gómez, K. Granlund, L. Hoffmann, B. Kronvang, S. Kværnø, A. Lázár, M. Mimikou, G. Passarella, P. Panagos, H. Reisser, B. Schwarzl, C. Siderius, A. S. Sileika, A. A. M. F. R. Smit, R. Sugrue, M. Van Liedekerke & J. Zaloudik, 2009. Basin characteristics and nutrient losses: the EUROHARP catchment network perspective. Journal of Environmental Monitoring 11: 515–525.PubMedCrossRefGoogle Scholar
  4. Cardille, J., M. T. Coe & J. A. Vano, 2004. Impacts of Climate Variation and Catchment Area on Water Balance and Lake Hydrologic Type in Groundwater-Dominated Systems: A Generic Lake Model. Earth Interactions 8, Paper No. 13: 1–24.Google Scholar
  5. CEN, 2003. Guidance standard for the routine analysis of phytoplankton abundance and composition. CEN TC 230/WG 2/TG 3/N83, updated 22 June 2006.Google Scholar
  6. Choi, J. S., 1998. Lake ecosystem responses to rapid climate change. Environmental Monitoring and Assessment 49: 281–290.CrossRefGoogle Scholar
  7. Dobberfuhl, D. R., 2003. Cylindrospermopsis raciborskii in three central Florida lakes: population dynamics, controls, and management implications. Lake and Reservoir Management 19: 341–348.CrossRefGoogle Scholar
  8. Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1905–1908.CrossRefGoogle Scholar
  9. Elliott, J. A., I. D. Jones & T. Page, 2009. The importance of nutrient source in determining the influence of retention time on phytoplankton: an explorative modelling study of a naturally well-flushed lake. Hydrobiologia 627: 129–142.CrossRefGoogle Scholar
  10. Ferris, J. A. & J. T. Lehman, 2007. Interannual variation in diatom bloom dynamics: roles of hydrology, nutrient limitation, sinking, and whole lake manipulation. Water Research 41: 2551–2562.PubMedCrossRefGoogle Scholar
  11. Floyd, W. C., S. H. Schoenholtz, S. M. Griffith, P. J. Wigington Jr. & J. J. Steiner, 2009. Nitrate-nitrogen, land use/land cover, and soil drainage associations at multiple spatial scales. Journal of Environmental Quality 38: 1473–1482.PubMedCrossRefGoogle Scholar
  12. George, D. G. & M. A. Hurley, 2003. Using a continuous function for residence time to quantify the impact of climate change on the dynamics of thermally stratified lakes. Journal of Limnology 62(Supplement 1): 21–26.Google Scholar
  13. George, D. G., S. C. Maberly & D. P. Hewitt, 2004. The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biology 49: 760–774.CrossRefGoogle Scholar
  14. George, D. G., V. A. Bell, J. Parker & R. J. Moore, 2006. Using a 1-D mixing model to assess the potential impact of year-to-year changes in weather on the habitat of vendace (Coregonus albula) in Bassenthwaite Lake, Cumbria. Freshwater Biology 51: 1407–1416.CrossRefGoogle Scholar
  15. George, G., U. Nickus, M. T. Dokulil & T. Blenckner, 2010. The influence of changes in the atmospheric circulation on the surface temperature of lakes. In George, D. G. (ed.), The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4. Springer, Dordrecht, Heidelberg, London, New York: 293–310.CrossRefGoogle Scholar
  16. Gerten, D. & R. Adrian, 2002. Effects of climate warming, North Atlantic oscillation, and El Niño-Southern oscillation on thermal conditions and plankton dynamics in Northern Hemispheric lakes. The Scientific World Journal 2: 586–606.Google Scholar
  17. Giménez-Benavides, L., A. Escudero & J. M. Iriondo, 2007. Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytologist 173: 367–382.PubMedCrossRefGoogle Scholar
  18. Giovannardi, S., L. Pollegioni, F. Pomati, C. Rossetti, S. Sacchi, L. Sessa & D. Calamari, 1999. Toxic cyanobacterial blooms in Lake Varese (Italy): a multidisciplinary approach. Environmental Toxicology 14: 127–134.CrossRefGoogle Scholar
  19. Gröne, T., 1997. Volatile organic sulfur species in three North Italian lakes: seasonality, possible sources and flux to the atmosphere. Memorie dell’Istituto Italiano di Idrobiologia 56: 77–94.Google Scholar
  20. Heaney, S. & C. Butterwick, 1985. Comparative mechanisms of algal movements in relation to phytoplankton production. In Rankin, M. A. (ed.), Contributions in Marine Science Supplement, Vol. 27: 114–133.Google Scholar
  21. Heaney, S. I., J. W. G. Lund, H. M. Canter & K. Gray, 1988. Population dynamics of Ceratium spp. in three English lakes, 1945–1985. Hydrobiologia 161: 133–148.CrossRefGoogle Scholar
  22. Hickel, B., 1988. Sexual reproduction and life cycle of Ceratium furcoides (Dinophyceae) in situ in the lake Plußsee (F.R.). Hydrobiologia 161: 41–48.CrossRefGoogle Scholar
  23. Hosper, S. H., 1997. Clearing Lakes: An Ecosystem Approach to the Restoration and Management of Shallow Lakes in the Netherlands. Ph.D. Thesis, Wageningen University, The Netherlands.Google Scholar
  24. Jeppesen, E., B. Kronvang, J. E. Olesen, J. Audet, M. Søndergaard, C. C. Hoffmann, H. E. Andersen, T. L. Lauridsen, L. Liboriussen, S. E. Larsen, M. Beklioglu, M. Meerhoff, A. Özen & K. Özkan, 2011. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663: 1–21.CrossRefGoogle Scholar
  25. Köhler, J. & S. Hoeg, 2000. Phytoplankton selection in a river–lake system during two decades of changing nutrient supply. Hydrobiologia 424: 13–24.CrossRefGoogle Scholar
  26. Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.CrossRefGoogle Scholar
  27. Lindström, K., 1992. Ceratium in Lake Erken: vertical distribution, migration and form variation. Nordic Journal of Botany 12: 541–556.CrossRefGoogle Scholar
  28. Lopez, P., R. Marcé, J. Ordoñez, I. Irrutia & J. Armengol, 2009. Sedimentary phosphorus in a cascade of five reservoirs (Lozoya River, Central Spain). Lake and Reservoir Management 25: 39–48.CrossRefGoogle Scholar
  29. Markensten, H. & D. C. Pierson, 2007. Weather driven influences on phytoplankton succession in a shallow lake during contrasting years: application of PROTBAS. Ecological Modelling 207: 128–136.CrossRefGoogle Scholar
  30. Mischke, U. & J. Böhmer, 2008. Software PhytoSee Version 3.0 Preliminary English Version of the calculation program for German Phyto-See-Index (PSI) according to Mischke et al. (2008) to assess natural lakes to implement the European Water Framework Directive. Free Internet Download (PhytoSee_Vers3_0_eng.zip), http://igb-berlin.de/abt2/mitarbeiter/mischke.
  31. Mischke, U., U. Riedmüller, E. Hoehn, I. Schönfelder & B. Nixdorf, 2008. Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In Mischke, U. & B. Nixdorf (eds), Brandenburg Technical University of Cottbus, ISBN 978-3-940471-06-2, BTUC-AR 2: 117–146.Google Scholar
  32. Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.CrossRefGoogle Scholar
  33. Nelson, D. M. & P. Treguer, 1992. Role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetic studies in the Ross Sea ice-edge zone. Marine Ecology Progress Series 80: 255–264.CrossRefGoogle Scholar
  34. Nickus, U., K. Bishop, M. Erlandsson, C. D. Evans, M. Forsius, H. Laudon, D. M. Livingstone, D. Monteith & H. Thies, 2010. Direct impacts of climate change on freshwater ecosystems. In Kernan, M., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Wiley-Blackwell, Oxford: 38–64.Google Scholar
  35. Nilsson, C. & B. M. Renöfält, 2008. Linking flow regime and water quality in rivers: a challenge to adaptive catchment management. Ecology and Society 13: 18–38.Google Scholar
  36. Nõges, P., T. Nõges, M. Ghiani, B. Paracchini, J. Pinto Grande & F. Sena, (in press). Morphometry and trophic state modify the thermal response of lakes to meteorological forcing. Hydrobiologia.Google Scholar
  37. Nowlin, W. H., J.-M. Davies, R. N. Nordin & A. Mazumdera, 2004. Effects of water level fluctuation and short-term climate variation on thermal and stratification regimes of a British Columbia reservoir and lake. Lake and Reservoir Management 20: 91–109.CrossRefGoogle Scholar
  38. Nürnberg, G. K., 2007. Lake responses to long-term hypolimnetic withdrawal treatments. Lake and Reservoir Management 23: 388–409.CrossRefGoogle Scholar
  39. OLL, 2005. Qualità delle acque lacustri in Lombardia. Osservatorio dei Laghi Lombardi. Rapporto No. 1. Fondazione Lombardia per l’Ambiente: 354 pp. http://www.flanet.org/101/progetto/osservatorio-dei-laghi-lombardi.
  40. Özen, A., B. Karapınar, İ. Kucuk, E. Jeppesen & M. Beklioglu, 2010. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646: 61–72.CrossRefGoogle Scholar
  41. Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.PubMedCrossRefGoogle Scholar
  42. Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.CrossRefGoogle Scholar
  43. Palmer, T. N. & J. Räisänen, 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415: 512–514.PubMedCrossRefGoogle Scholar
  44. Pettersson, K., D. G. George, P. Nõges, T. Nõges & T. Blenckner, 2010. The impact of the changing climate on the supply and re-cycling of phosphorus. In George, D. G. (ed.), The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4. Springer, Dordrecht, Heidelberg, London, New York: 121–137.CrossRefGoogle Scholar
  45. Poister, D. & D. E. Armstrong, 2003. Seasonal sedimentation trends in a mesotrophic lake: influence of diatoms and implications for phosphorus dynamics. Biogeochemistry 65: 1–13.CrossRefGoogle Scholar
  46. Premazzi, G., A. C. Cardoso, E. Rodari, M. Austoni & G. Chiaudani, 2005. Hypolimnetic withdrawal coupled with oxygenation as lake restoration measures: the successful case of Lake Varese (Italy). Limnetica 24: 123–132.Google Scholar
  47. Prepas, E. E. & T. Charette, 2003. Worldwide eutrophication of water bodies: causes, concerns, controls. In Sherwood Lollar, B. (ed.), Environmental Geochemistry. Elsevier, Oxford, Amsterdam: 311–331.Google Scholar
  48. Provincia di Varese, 2009. Sintesi meteorologica 2008. Centro Geofisico Prealpino: 4 pp. http://www.astrogeo.va.it/statistiche/statmet.php.
  49. Räisänen, J., U. Hansson, A. Ullerstig, R. Döscher, L. P. Graham, C. Jones, H. E. M. Meier, P. Samuelsson & U. Willén, 2004. European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Climate Dynamics 22: 13–31.CrossRefGoogle Scholar
  50. Rossetti, C., F. Pomati & D. Calamari, 2001. Microorganisms’ activity and energy fluxes in Lake Varese (Italy): a field method. Water Research 35: 18–24.CrossRefGoogle Scholar
  51. Salmaso, N., 2000. Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the Alps, with special reference to Lake Garda. Hydrobiologia 438: 43–63.CrossRefGoogle Scholar
  52. Salmaso, N., G. Morabito, F. Buzzi, L. Garibaldi, M. Simona & R. Mosello, 2006. Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563: 167–187.CrossRefGoogle Scholar
  53. Schindler, D. W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.CrossRefGoogle Scholar
  54. Sollie, S., H. Coops & J. T. A. Verhoeven, 2008. Natural and constructed littoral zones as nutrient traps in eutrophicated shallow lakes. Hydrobiologia 605: 219–233.CrossRefGoogle Scholar
  55. Sommer, U., M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  56. Standard Methods, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington, DC.Google Scholar
  57. Stefaniak, K., R. Gołdyn & K. Kowalczewska-Madura, 2007. Changes of summer phytoplankton communities in Lake Swarzędzkie in the 2000–2003 period. International Journal of Oceanography and Hydrobiology 36(Supplement 1): 77–85.Google Scholar
  58. Talling, J. F., 1974. In standing waters. In Vollenweider, R. A. (ed.), A Manual on Methods for Measuring Primary Production in Aquatic Ecosystems. Blackwell Publishing, Oxford: 119–123.Google Scholar
  59. Teodoru, C. & B. Wehrli, 2005. Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76: 539–565.CrossRefGoogle Scholar
  60. Thornthwaite, C. W. & J. R. Mather, 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Publications in Climatology 10. C.W. Thornthwaite & Associates, Centerton, NJ.Google Scholar
  61. Tilzer, M. M., 1987. Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zealand Journal of Marine and Freshwater Research 21: 401–412.CrossRefGoogle Scholar
  62. Tolotti, M., F. Corradini, A. Boscaini & D. Calliari, 2007. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578: 147–156.CrossRefGoogle Scholar
  63. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung für theoretische und angewandte Limnologie/Mitteilungen 5: 567–596.Google Scholar
  64. Visconti, A., M. Manca & R. de Bernardi, 2008. Eutrophication-like response to climate warming: an analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. Journal of Limnology 67: 87–92.Google Scholar
  65. Wagner, C. & R. Adrian, 2009a. Exploring lake ecosystems: hierarchy responses to long-term change? Global Change Biology 15: 1104–1115.CrossRefGoogle Scholar
  66. Wagner, C. & R. Adrian, 2009b. Cyanobacteria dominance: quantifying the effects of climate change. Limnology and Oceanography 54: 2460–2468.CrossRefGoogle Scholar
  67. Wolford, R. A. & R. C. Bales, 1996. Hydrochemical modeling of Emerald Lake Watershed, Sierra Nevada, California: sensitivity of stream chemistry to changes in fluxes and model parameters. Limnology and Oceanography 41: 947–954.CrossRefGoogle Scholar
  68. Wu, J.-T. & J.-W. Chou, 1998. Dinoflagellate associations in Feitsui Reservoir, Taiwan. Botanical Bulletin of Academia Sinica 39: 137–145.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Peeter Nõges
    • 1
    • 2
  • Tiina Nõges
    • 1
    • 2
  • Michela Ghiani
    • 1
  • Fabrizio Sena
    • 1
  • Roswitha Fresner
    • 3
  • Maria Friedl
    • 3
  • Johanna Mildner
    • 3
  1. 1.Joint Research Centre, Institute for Environment and SustainabilityEuropean CommissionIspraItaly
  2. 2.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesRannu, TartumaaEstonia
  3. 3.Carinthian Institute for Lake ResearchKlagenfurtAustria

Personalised recommendations