Skip to main content
Log in

The decomposition of aquatic macrophytes: bioassays versus in situ experiments

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In aquatic sciences, the agreement between laboratory and field observations remains a challenge. Using kinetic modeling, this research aims to compare the decomposition in laboratory and in situ conditions. In the in situ incubations, the mass decreases of the aquatic macrophytes (Echinodorus tenellus, Hydrocotyle verticillata, Najas microcarpa and Pontederia parviflora) were described using a litter bag technique and in the laboratory their decomposition was maintained under controlled conditions. The plants and water samples were collected from a tropical reservoir (Brazil). To describe the particulate organic carbon (POC) decay we adopted a two stage kinetic model that considered the heterogeneity of resources. The released organic carbon (i.e., losses related to mineralization, dissolution and sedimentation of smaller particles than the litter bag mesh) were used to compare the results derived from the field and laboratory incubations. Despite the methodological differences, the results show equivalence among the POC decay. The decomposition measured by litter bags method was 1.32 faster, owing to the effects of losses by sedimentation of the smaller particles, abrasion, action of decomposer organisms (e.g., fragmentation and enzymatic attack) and synergy among these factors. From a mathematical modeling approach, the results validate the use of decomposition data obtained under controlled conditions providing estimations of energy and matter fluxes within aquatic ecosystems. However, it is necessary to adopt a coefficient to acquire the similarity (e.g., 1.32).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bärlocher, F., 1997. Pitfalls of traditional techniques when studying decomposition of vascular plant remains in aquatic habitats. Limnetica 13: 1–11.

    Google Scholar 

  • Bärlocher, F., 2005a. Leaf mass loss estimated by litter bag technique. In Graça, M. A. S., F. Bärlocher & M. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 37–42.

    Chapter  Google Scholar 

  • Bärlocher, F., 2005b. Leaching. In Graça, M. A. S., F. Bärlocher & M. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 33–36.

    Chapter  Google Scholar 

  • Bianchini, I., Jr., 1982. Contribuição ao estudo da decomposição de plantas aquáticas. Dissertation. PPGERN-UFSCar: 178 pp.

  • Bianchini, I., Jr., 2003. Modelos de crescimento e decomposição de macrófitas aquáticas. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. Eduem, Maringá: 85–126.

    Google Scholar 

  • Bianchini, I., Jr., A. L. Bitar & M. B. Cunha-Santino, 2006a. Egeria najas Planchon growth from Óleo Lagoon under laboratory conditions. In Santos, J. E., J. S. Pires & L. E. Moschini (eds), Integrated Studies in Ecosystems—Jataí Ecological Station (in Portuguese), Vol. 4. FAPESP/ EdUFSCar, São Carlos: 99–111.

    Google Scholar 

  • Bianchini, I., Jr., A. M. Peret & M. B. Cunha-Santino, 2006b. A mesocosm study of aerobic mineralization of seven aquatic macrophytes. Aquatic Botany 85: 163–167.

    Article  Google Scholar 

  • Bianchini, I., Jr., M. B. Cunha-Santino, A. T. Fushita, D. A. A. Almeida & A. Maia, 2010. Monitoramento das macrófitas aquáticas do reservatório da Usina Hidrelétrica Luís Eduardo Magalhães (Estado de Tocantins, Brasil). AUGM DOMUS 2: 38–48.

    Google Scholar 

  • Bini, L. M., S. M. Thomaz, K. J. Murphy & A. F. M. Camargo, 1999. Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415: 147–154.

    Article  Google Scholar 

  • Bouchard, V., S. D. Frey, J. M. Gilbert & S. E. Reed, 2007. Effects of macrophyte functional groups richness on emergent freshwater wetland functions. Ecology 88: 2903–2914.

    Article  PubMed  Google Scholar 

  • Camargo, A. F. M., 1984. Aspectos ecológicos de três espécies de macrófitas aquáticas da represa do Lobo, SP: Interações com macroinvertebrados e decomposição. Dissertation. PPGERN-UFSCar: 134 pp.

  • Camargo, A. F. M., M. M. Pezzato & G. G. Henry-Silva, 2003. Fatores limitantes à produção primária de macrófitas aquáticas. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. Eduem, Maringá: 59–83.

    Google Scholar 

  • Camargo, A. F. M., M. M. Pezzato, G. G. Henry-Silva & A. M. Assumpção, 2006. Primary production of Utricularia foliosa, Egeria densa and Cabomba furcata from rivers of the coastal plain of the State of São Paulo, Brazil. Hydrobiologia 570: 35–39.

    Article  Google Scholar 

  • Cunha-Santino, M. B. & I. Bianchini Jr., 2006. Kinetics of the aerobic decomposition of Utricularia breviscapa Wright ex Griseb from Óleo Lagoon. In Santos, J. E., J. S. Pires & L. E. Moschini (eds), Integrated Studies in Ecosystems—Jataí Ecological Station (in Portuguese), Vol. 4. FAPESP/EdUFSCar, São Carlos: 130–142.

    Google Scholar 

  • Cunha-Santino, M. B. & I. Bianchini Jr., 2008. Carbon cycling potential from Utricularia breviscapa decomposition in a tropical oxbow lake (São Paulo, Brazil). Ecological Modelling 218: 375–382.

    Article  Google Scholar 

  • Enríquez, S., C. M. Duarte & K. Sand-Jensen, 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94: 457–471.

    Article  Google Scholar 

  • Figueiredo, D. M. & I. Bianchini Jr., 2008. Limnological patterns of the filling and stabilization phases in the Manso multiple-use Reservoir (MT). Acta Limnologica Brasiliensia 20: 277–290.

    Google Scholar 

  • Gessner, M. O., 2000. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of temperate hardwater lake. Aquatic Botany 66: 9–20.

    Article  Google Scholar 

  • Havel, J. E., C. E. Lee & M. J. V. Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.

    Article  Google Scholar 

  • Hohmann, J. & R. K. Neely, 1993. Decomposition of Sparganium eurycarpum under controlled pH and nitrogen regimes. Aquatic Botany 46: 17–33.

    Article  CAS  Google Scholar 

  • Killops, S. D. & V. J. Killops, 1994. An Introduction to Organic Geochemistry. Longman/Wiley, Singapore: 265 pp.

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir primary production. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 133–193.

    Google Scholar 

  • Lolis, S. F., 2008. Macrófitas aquáticas do reservatório Luís Eduardo Magalhães - Lajeado - Tocantins: biomassa, composição da comunidade e riqueza de espécies. Thesis. PPGEAAC-UEM: 76 pp.

  • Lousier, J. D. & D. Parkinson, 1976. Litter decomposition in a cool temperate deciduous forest. Canadian Journal of Botany 54: 419–436.

    CAS  Google Scholar 

  • Marcondes, D. A. S., A. L. Mustafá & R. H. Tanaka, 2003. Estudos para manejo integrado de plantas aquáticas no reservatório de Jupiá. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manjo de macrófitas aquáticas. EDUEM, Maringá: 299–317.

    Google Scholar 

  • Martins, D., N. V. Costa, M. A. Terra & S. R. Marchi, 2008. Caracterização da comunidade de plantas aquáticas de dezoito reservatórios pertencentes a cinco bacias hidrográficas do estado de São Paulo. Planta Daninha 26: 17–32.

    Google Scholar 

  • Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology 55: 1315–1326.

    Article  Google Scholar 

  • Minderman, G., 1968. Addition, decomposition and accumulation of organic matter in the soil. Journal of Ecology 56: 355–362.

    Article  Google Scholar 

  • Neiff, J. J., 1990. Ideas para la interpretacion ecológica de Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • Odum, W. E. & M. A. Heywood, 1978. Decomposition of intertidal freshwater marsh plants. In Good, R. E., D. F. Whigham & R. L. Simpson (eds), Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York: 89–97.

    Google Scholar 

  • Peret, A. M. & I. Bianchini Jr., 2004. Stoichiometry of aerobic mineralization (O/C) of aquatic macrophytes leachate from a tropical lagoon (São Paulo - Brazil). Hydrobiologia 528: 167–178.

    Article  CAS  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling & B. P. Flannery, 1993. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York: 994.

    Google Scholar 

  • Reddy, K. R. & R. D. DeLaune, 2008. Biochemistry of Wetlands. Science and Applications. CRC Press, Boca Raton: 774 pp.

  • Reis Pereira, V. L., 2002. A Limnologia e o gerenciamento integrado do reservatório da Usina Hidrelétrica Luis Eduardo Magalhães - UHE Lajeado Tocantins. Thesis, CRHEA-EESC-USP: 262 pp.

  • Salamanca, E. F., N. Kaneko & S. Katagiri, 1997. Comparation of field and laboratory methods on the mass loss of Quercus serrata and Pinus densiflora leaf litter. Journal of Forest Research 2: 159–164.

    Article  Google Scholar 

  • Shapiro, S. S. & M. B. Wilk, 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.

    Google Scholar 

  • Silva, T. S. F., M. P. F. Costa & J. M. Melak, 2009. Annual net primary production of macrophytes in the eastern Amazon floodplain. Wetlands 29: 747–758.

    Article  Google Scholar 

  • Straškraba, M., 1999. Retention time as a key variable of reservoir limnology. In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and Its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, Leiden: 385–410.

    Google Scholar 

  • Swift, M. J., D. W. Heal & J. M. Anderson, 1979. Decomposition in terrestrial ecosystems. Studies in Ecology, Vol. 5. Blackwell, Oxford: 371.

    Google Scholar 

  • Tanaka, R. H., L. R. Cardoso, D. Martins, D. A. S. Marcondes & A. L. Mustafá, 2002. Ocorrência de plantas aquáticas nos reservatórios da Companhia Energética de São Paulo. Planta Daninha 20: 99–111.

    Google Scholar 

  • Theel, H. J., E. D. Dibble & J. D. Madsen, 2008. Differential influence of monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage: an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77–87.

    Article  Google Scholar 

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini & K. J. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.

    Article  Google Scholar 

  • Thomaz, S. M., P. Carvalho, A. A. Padial & J. T. Kobayashi, 2009. Temporal and spatial patterns of aquatic macrophyte diversity in the Upper Paraná River floodplain. Brazilian Journal of Biology 69: 617–625.

    Article  CAS  Google Scholar 

  • Tundisi, J. E. M., 2006. Indicadores da qualidade da bacia hidrográfica para gestão integrada dos recursos hídricos. Estudo de caso: Bacia hidrográfica do Médio Tocantins. Thesis, PPGERN-UFSCar: 152 pp.

  • Vignati, D. A., B. J. D. Ferrari & J. Dominik, 2007. Laboratory-to-field extrapolation in aquatic sciences. Environmental Science & Technology 41: 1067–1073.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1990. Detritus, macrophytes and nutrient cycling in lakes. Memorie dell’ Istituto Italiano di Idrobiologia. Memorie dell’Istituto Italiano di Idrobiologia “Dott. Marco de Marchi” 47: 233–249.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology—Lake and River Ecosystems. Academic Press/Elsevier, San Diego: 1006 pp.

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analysis, 2nd ed. Springer-Verlag, New York: 391.

    Google Scholar 

  • Wieder, R. W. & G. Lang, 1982. A critique of the analytical methods used in examining decomposition data obtained from litterbags. Ecology 63: 1636–1642.

    Article  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River: 931 pp.

Download references

Acknowledgments

The authors are grateful to the National Counsel of Technological and Scientific Development (CNPq proc. no 302935/2007-0) and the State of São Paulo Research Foundation (FAPESP proc. no: 2007/002683-7) for the funding for this research. We are also grateful to Dr. Osvaldo N. Oliveira Jr. (IFSC-USP) for his critical proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bianchini Jr..

Additional information

Handling editor: Sidinei Magela Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, D.S., Cunha-Santino, M.B., Marques, E.E. et al. The decomposition of aquatic macrophytes: bioassays versus in situ experiments. Hydrobiologia 665, 219–227 (2011). https://doi.org/10.1007/s10750-011-0625-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0625-4

Keywords

Navigation