, Volume 665, Issue 1, pp 143–155 | Cite as

The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers

  • Susanne C. SchneiderEmail author
  • Eli-Anne Lindstrøm
Primary research paper


Eutrophication is one of the major problems for surface water quality in Norway, particularly in the lowlands near settlements and agricultural areas. Here, we present a new index based on non-diatomaceous benthic algae (Periphyton index of trophic status, PIT) which is developed on a dataset of >500 samples from >350 sites from the Norwegian mainland and can be used to describe trophic status at a river site. PIT indicator values for benthic algae taxa are derived from water total phosphorus concentrations and range from 1.87 for Stigonema hormoides to 68.91 for Tribonema sp. PIT site values range from 3.42 to 44.45 and cover a range from oligotrophic to eutrophic conditions. The relationship between the PIT and the total phosphorus concentration has one major threshold at 10 μg/l TP, with a slow increase below and a steep increase above 10 μg/l. We conclude that benthic algae species composition at nutrient poor sites reacts only slightly to small increases in phosphorus concentration, while it is most sensible to eutrophication in the range between 10 and 30 μg TP/l. For the genus Oedogonium, we found a significant positive correlation between filament width and TP concentration, making Oedogonium an easy to use eutrophication indicator.


Periphyton Epilithon Phytobenthos Phosphorus Indicator Oedogonium 



Maria Kahlert, Amelie Jarlmann, and Raino-Lars Albert are gratefully acknowledged for providing water chemistry data from Swedish and Finnish reference rivers. We thank Robert Ptacnik and Jannicke Moe for help with R, Richard F. Wright for helpful comments on the manuscript and many colleagues from the Norwegian Institute for Water Research for decades of data collection.


  1. Anderson, E. L., E. B. Welch, J. M. Jacoby, G. M. Schimek & R. R. Horner, 1999. Periphyton removal related to phosphorus and grazer biomass level. Freshwater Biology 41: 633–651.CrossRefGoogle Scholar
  2. Battarbee, R. W., R. J. Flower, S. Juggins, S. T. Patrick & A. C. Stevenson, 1997. The relationship between diatoms and surface water quality in the Høylandet area of Nord-Trøndelag, Norway. Hydrobiologia 348: 69–80.CrossRefGoogle Scholar
  3. Bechmann, M. E., D. Berge, H. O. Eggestad & S. M. Vandsem, 2005. Phosphorus transfer from agricultural areas and its impact on the eutrophication of lakes—two long-term integrated studies from Norway. Journal of Hydrology 304: 238–250.CrossRefGoogle Scholar
  4. Boström, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133–155.CrossRefGoogle Scholar
  5. Boyer, J. N., S. K. Dailey, P. J. Gibson, M. T. Rogers & D. Mir-Gonzalez, 2006. The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in Florida Bay. Hydrobiologia 569: 71–85.CrossRefGoogle Scholar
  6. Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.CrossRefGoogle Scholar
  7. Drummond, C. S., J. Hall, K. G. Karol, C. F. Delwiche & R. M. McCourt, 2005. Phylogeny of Spirogyra and Sirogonium (Zygnematophyceae) based on rbcL sequence data. Journal of Phycology 41(5): 1055–1064.CrossRefGoogle Scholar
  8. Eloranta, P. & J. Soininen, 2002. Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology 14(1): 1–7.CrossRefGoogle Scholar
  9. Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10(12): 1135–1142.PubMedCrossRefGoogle Scholar
  10. EN, European Committee for Standardization, 2009. Water quality—guidance standard for the surveying, sampling and laboratory analysis of phytobenthos in shallow running water. EN 15708:2009.Google Scholar
  11. European Communities (EC), 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. OF L 327, 22/12/2000.Google Scholar
  12. Faafeng, B. A. & D. O. Hessen, 1993. Nitrogen and phosphorus concentrations and N:P ratios in Norwegian lakes: Perspectives on nutrient limitation. Verhandlungen des Internationalen Verein Limnologie 25: 465–469.Google Scholar
  13. Friedrich, G., 1990. Eine Revision des Saprobiensystems. Zeitschrift Fur Wasser und Abwasser Forschung 23: 141–152.Google Scholar
  14. Gerdes, P. & S. Kunst, 1998. Bioavailability of phosphorus as a tool for efficient P reduction schemes. Water Science and Technology 37(3): 241–247.CrossRefGoogle Scholar
  15. Gigliotti, G., K. Kaiser, G. Guggenberger & L. Haumaier, 2002. Differences in the chemical composition of dissolved organic matter from waste material of different sources. Biology and Fertility of Soils 36(5): 321–329.CrossRefGoogle Scholar
  16. Gutowski, A. & J. Foerster, 2009. Benthische Algen ohne Diatomeen und Characeen. Bestimmungshilfe (in German). Ed. by Landesamt fuer Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen. LANUV-Arbeitsblatt 9. 474 pp.Google Scholar
  17. Haande, S., T. Rohrlack, C. Hagman & T. Norendal, 2010. Overvåking av Gjersjøen og Kolbotnvannet med tilløpsbekker 1972–2009. Med vekt på resultater fra 2009—datarapport. NIVA rapport 5991 (in Norwegian): 80 pp.Google Scholar
  18. Henriksen, A., B. L. Skjelkvale, J. Mannio, A. Wilander, R. Harriman, C. Curtis, J. P. Jensen, E. Fjeld & T. Moiseenko, 1998. Northern European Lake Survey, 1995—Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. AMBIO 27(2): 80–91.Google Scholar
  19. Hernández, I., F. X. Niell & B. A. Whitton, 2002. Phosphatase activity of benthic marine algae. An overview. Journal of Applied Phycology 14: 475–487.CrossRefGoogle Scholar
  20. Hilton, J., M. O`Hare, M. J. Bowes & I. Jones, 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365: 66–83.PubMedCrossRefGoogle Scholar
  21. Kelly, M. & B. Whitton, 1998. Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55–67.CrossRefGoogle Scholar
  22. Kelly, M., S. Juggins, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst & M. Yallop, 2008. Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology 53(2): 403–422.Google Scholar
  23. Kelly, M., C. Bennett, M. Coste, C. Delgado, F. Delmas, L. Denys, L. Ector, C. Fauville, M. Ferreol, M. Golub, A. Jarlman, M. Kahlert, L. Lucey, B. Ni Chathain, I. Pardo, P. Pfister, J. Picinska-Faltynowicz, J. Rosebery, C. Schranz, J. Schaumburg, H. van Dam & S. Vilbaste, 2009. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621: 169–182.CrossRefGoogle Scholar
  24. Koenker, R., 2010. Quantreg: quantile regression. R package version 4.53.
  25. Kopacek, J., J. Hejzlar, J. Borovec, P. Porcal & I. Kotorova, 2000. Phosphorus inactivation by aluminum in the water column and sediments: Lowering of in-lake phosphorus availability in an acidified watershed-lake ecosystem. Limnology and Oceanography 45(1): 212–225.CrossRefGoogle Scholar
  26. Kortelainen, P., 1993. Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Canadian Journal of Fisheries and Aquatic Sciences 50: 1477–1483.CrossRefGoogle Scholar
  27. Kovács, C., M. Kahlert & J. Padisák, 2006. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. Journal of Applied Phycology 18: 105–117.CrossRefGoogle Scholar
  28. Lavoie, I., S. Campeau, F. Darchambeau, G. Cabana & P. J. Dillon, 2008. Are diatoms good integrators of temporal variability in stream water quality? Freshwater Biology 53(4): 827–841.CrossRefGoogle Scholar
  29. Lindstrøm, E.-A., 1993. Økende grønske i norske vassdrag. Resultater av en spørreundersøkelse. NIVA report 2859 (in Norwegian): 28 pp.Google Scholar
  30. Lindstrøm, E.-A., 1996. The humic lake acidification experiment (HUMEX): impacts of acid treatment on periphyton growth and nutrient availability in lake Skjervatjern, Norway. Environment International 22(5): 629–642.CrossRefGoogle Scholar
  31. Lindstrøm, E.-A., S. W. Johansen & T. Saloranta, 2004. Periphyton in running waters—long-term studies of natural variation. Hydrobiologia 521: 63–86.CrossRefGoogle Scholar
  32. Mateo, P., I. Douterelo, E. Berrendero & E. Perona, 2006. Physiological differences between two species of cyanobacteria in relation to phosphorus limitation. Journal of Phycology 42(1): 61–66.CrossRefGoogle Scholar
  33. Mateo, P., E. Berrendero, E. Perona, V. Loza & B. Whitton, 2010. Phosphatase activities of cyanobacteria as indicators of nutrient status in a Pyrenees river. Hydrobiologia 652: 255–268.CrossRefGoogle Scholar
  34. Meili, M., 1992. Sources, concentrations and characteristics of organic-matter in softwater lakes and streams of the Swedish forest region. Hydrobiologia 229: 23–41.CrossRefGoogle Scholar
  35. Naumann, E., 1929. Einige neue Gesichtspunkte zur Systematik der Gewässertypen. Archiv für Hydrobiologie 20: 191–198.Google Scholar
  36. Niemi, J., P. Heinonen, S. Mitikka, H. Vuoristo, O.-P. Pietiläinen, M. Puupponen & E. Rönkä (eds), 2001. The Finnish Eurowaternet with Information About Finnish Water Resources and Monitoring Strategies. The Finnish Environment No 445. Finnish Environment Institute, Helsinki.Google Scholar
  37. Oberholster, P. J., P. J. Ashton, G. B. Fritz & A. M. Botha, 2010. First report on the colony-forming freshwater ciliate Ophrydium versatile in an African river. Water SA 36(3): 315–321.Google Scholar
  38. Ohle, W., 1955. Beiträge zur Produktionsbiologie der Gewässer. Arch. Hydrobiol., Supplement XXII: 456–479.Google Scholar
  39. Otnes, J. & E. Ræstad, 1978. Hydrologi i praksis. Ingeniørforlaget, Oslo.Google Scholar
  40. Pfister, P., 1993. Seasonality of macroalgal distribution patterns within the reach of a gravel stream (Isar, Tyrol, Austria). Archiv fur Hydrobiologie 129(1): 89–107.Google Scholar
  41. Ponader, K. C., D. F. Charles & T. J. Belton, 2007. Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecological Indicators 7: 79–93.CrossRefGoogle Scholar
  42. Ptacnik, R., A. G. Solimini & P. Brettum, 2009. Performance of a new phytoplankton composition metric along a eutrophication gradient in Nordic lakes. Hydrobiologia 633: 75–82.CrossRefGoogle Scholar
  43. R Project Core Development Team, 2005. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  44. Rodhe, W., 1969. Crystallization of eutrophication concepts in Northern Europe. In: ILEC/Lake Biwa Research Institute (eds), Eutrophication: Causes, Consequences, Correctives. National Academy of Sciences, Washington: 50–64.Google Scholar
  45. Rott, E., H. Van Dam, P. Pfister, E. Pipp, K. Pall, N. Binder & K. Ortler, 1999. Indikationslisten für Aufwuchsalgen. Teil 2: Trophieindikation, geochemische Reaktion, toxikologische und taxonomische Anmerkungen. Wasserwirtschaftskataster, BMfLF, Vienna: 1–248.Google Scholar
  46. Sand-Jensen, K. O. Geertz-Hansen, O. Pedersen & H. Skovgaard Nielsen, 1994. Size dependence of composition, photosynthesis and growth in the colony-forming freshwater ciliate, Ophrydium versatile. Freshwater Biology 31: 121–130.CrossRefGoogle Scholar
  47. Schartau A. K, R. Abelsen, G. Halvorsen, A. Hobæk, S. W. Johansen, S.-E. Sloreid & B. Walseng, 2007. Forslag til overvåkingslokaliteter for etablering av referanseverdier for økologiske kvalitetselementer i ferskvann—Fase 3: elver og innsjøer. NINA rapport 153 (in Norwegian).Google Scholar
  48. Schartau A. K., A. Lyche Solheim, G. Halvorsen, T. Høgaasen, M. Lindholm, B. Skjelbred, S. E. Sloreid & B. Walseng, 2009. Nettverk for basisovervåking i innsjøer og elver i Norge i hht. Vannforskriften. Forslag. NINA rapport 520 (in Norwegian).Google Scholar
  49. Schaumburg, J., C. Schranz, J. Foerster, A. Gutowski, G. Hofmann, P. Meilinger, S. Schneider & U. Schmedtje, 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34(4): 283–301.Google Scholar
  50. Schneider, S., 2007. Macrophyte trophic indicator values from a European perspective. Limnologica 37(4): 281–289.Google Scholar
  51. Schneider, S., 2011. Impact of calcium and TOC on biological acidification assessment in Norwegian rivers. Science of the Total Environment 409: 1164–1171.Google Scholar
  52. Schneider, S. & E.-A. Lindstrøm, 2009. Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecological Indicators 9: 1206–1211.CrossRefGoogle Scholar
  53. Schneider, S. & A. Melzer, 2003. The trophic index of macrophytes (TIM)—a new tool for indicating the trophic state of running waters. International Review of Hydrobiology 88: 49–67.CrossRefGoogle Scholar
  54. Seitzinger, S. P., R. W. Sanders & R. Styles, 2002. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography 47(2): 353–366.CrossRefGoogle Scholar
  55. Selvik, J. R., T. Tjomsland, S. A. Borgvang & H. O. Eggestad, 2006. Tilførsler av næringsstoffer til Norges kystområder i 2005, beregnet med tilførselsmodellen TEOTIL2. NIVA-report 5330-2007 (in Norwegian).Google Scholar
  56. Siuda, W., 1984. Phosphatases and their role in organic phosphorus transformation in natural waters: a review. Polish Archives of Hydrobiology 31: 207–233.Google Scholar
  57. Stepanauskas, R., L. Leonardson & L. J. Tranvik, 1999. Bioavailability of wetland-derived DON to freshwater and marine bacterioplankton. Limnology and Oceanography 44: 1477–1485.CrossRefGoogle Scholar
  58. Ter Braak, C. J. F. & H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.CrossRefGoogle Scholar
  59. Udeigwe, T. K., J. J. Wang & H. L. Zhang, 2007. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests. Journal of Environmental Quality 36(5): 1310–1317.PubMedCrossRefGoogle Scholar
  60. Ulen, B., M. Bechmann, J. Folster, H. P. Jarvie & H. Tunney, 2007. Agriculture as a phosphorus source for eutrophication in the north-west European countries, Norway, Sweden, United Kingdom and Ireland: a review. Soil Use and Management 23: 5–15.CrossRefGoogle Scholar
  61. Warnaars, T. A., M. Hondzo & M. E. Power, 2007. Abiotic controls on periphyton accrual and metabolism in streams: scaling by dimensionless numbers. Water Resources Research 43(8): W08425.Google Scholar
  62. Wetzel, R., 1983. Limnology, 2nd ed. CBS College Publishing, New York: 767 pp.Google Scholar
  63. Withers, P. J. A. & P. M. Haygarth, 2007. Agriculture, phosphorus and eutrophication: a European perspective. Soil Use and Management 23(Suppl 1): 1–4.CrossRefGoogle Scholar
  64. Ylla, I., A. M. Romani & S. Sabater, 2007. Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundamental and Applied Limnology 170(1): 1–10.CrossRefGoogle Scholar
  65. Young, E. B., R. C. Tucker & L. A. Pansch, 2010. Alkaline phosphatase in freshwater Cladophora-epiphyte assemblages: regulation in response to phosphorus supply and localization. Journal of Phycology 46: 93–101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Norwegian Institute of Water ResearchOsloNorway

Personalised recommendations