Skip to main content

Advertisement

Log in

Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many environmental variables that are important for the development of chironomid larvae (such as water temperature, oxygen availability, and food quantity) are related to water depth, and a statistically strong relationship between chironomid distribution and water depth is therefore expected. This study focuses on the distribution of fossil chironomids in seven shallow lakes and one deep lake from the Plymouth Aquifer (Massachusetts, USA) and aims to assess the influence of water depth on chironomid assemblages within a lake. Multiple samples were taken per lake in order to study the distribution of fossil chironomid head capsules within a lake. Within each lake, the chironomid assemblages are diverse and the changes that are seen in the assemblages are strongly related to changes in water depth. Several thresholds (i.e., where species turnover abruptly changes) are identified in the assemblages, and most lakes show abrupt changes at about 1–2 and 5–7 m water depth. In the deep lake, changes also occur at 9.6 and 15 m depth. The distribution of many individual taxa is significantly correlated to water depth, and we show that the identification of different taxa within the genus Tanytarsus is important because different morphotypes show different responses to water depth. We conclude that the chironomid fauna is sensitive to changes in lake level, indicating that fossil chironomid assemblages can be used as a tool for quantitative reconstruction of lake level changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barley, E. M., I. R. Walker, J. Kurek, L. C. Cwynar, R. W. Mathewes, K. Gajewski & B. P. Finney, 2006. A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. Journal of Paleolimnology 36: 295–314.

    Article  Google Scholar 

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.

    Article  Google Scholar 

  • Birks, H. J. B., 1998. Numerical tools in palaeolimnology—progress, potentialities, and problems. Journal of Paleolimnology 20: 307–332.

    Article  Google Scholar 

  • Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.

    Google Scholar 

  • Birks, H. J. B. & J. M. Line, 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2: 1–10.

    Google Scholar 

  • Brodersen, K. P., B. V. Odgaard, O. Vestergaard & N. J. Anderson, 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaards, Denmark: chironomid-macrophyte co-occurrence. Freshwater Biology 46: 253–267.

    Article  Google Scholar 

  • Brodin, Y.-W., 1986. The postglacial history of Lake Flarken, southern Sweden, interpreted from subfossil insect remains. Internationale Revue der Gesamten Hydrobiologie 71: 371–432.

    Article  Google Scholar 

  • Brooks, S. J., 1996. Three thousand years of environmental history in a Cairngorms lochan revealed by analysis of non-biting midges (Insecta, Diptera, Chironomidae). Botanical Journal of Scotland 48: 89–98.

    Article  Google Scholar 

  • Brooks, S. J., 2000. Lateglacial fossil midge stratigraphies (Insecta, Diptera, Chironomidae) from the Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 261–279.

    Article  Google Scholar 

  • Brooks, S. J., 2006. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quaternary Science Reviews 25: 1894–1910.

    Article  Google Scholar 

  • Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20: 1723–1741.

    Article  Google Scholar 

  • Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.

    Google Scholar 

  • Brundin, L., 1949. Chironomiden und andere Bodentiere der Südschwedischen Urgebirgsseen. Institute of Freshwater Research Drottningholm 30: 1–914.

    Google Scholar 

  • Cranston, P. S., D. R. Oliver & O. A. Saether, 1983. The larvae of the Orthocladiinae (Diptera: Chironomidae) of the Holarctic region—keys and diagnoses. In Wiederholm, T. (ed.), Chironomidae of the Holarctic Region. Keys and Diagnoses, Part I. Larvae. Entomologica Scandinavica Supplement 19: 149–291.

  • Eggermont, H., O. Heiri & D. Verschuren, 2006. Fossil Chironomidae (Insecta:Diptera) as quantitative indicators of past salinity in African Lakes. Quaternary Science Reviews 25: 1966–1994.

    Article  Google Scholar 

  • Eggermont, H., D. Kennedy, S. T. Hasiotis, D. Verschuren & A. Cohen, 2008. Distribution of living larval Chironomidae (Insecta: Diptera) along a depth transect at Kigoma Bay, Lake Tangayika: implications for palaeoenvironmental reconstruction. African Entomology 16: 162–184.

    Article  Google Scholar 

  • Engels, S., S. J. P. Bohncke, O. Heiri, K. Schaber & F. Sirocko, 2008. The lacustrine sediment record of Oberwinkler Maar (Eifel, Germany): chironomid and macro-remain-based inferences of environmental changes during oxygen isotope stage 3. Boreas 37: 414–425.

    Google Scholar 

  • Epler, J. H., 2001. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources, Raleigh.

    Google Scholar 

  • Fittkau, E. J. & S. S. Roback, 1983. The larvae of the Tanypodinae (Diptera: Chironomidae) of the Holarctic region—keys and diagnoses. In Wiederholm, T. (ed.), Chironomidae of the Holarctic region. Keys and Diagnoses, Part I. Larvae. Entomologica Scandinavica Supplement 19: 33–110.

  • Gauch, H. G. & R. H. Whittaker, 1981. Hierarchical classification of community data. Journal of Ecology 69: 537–557.

    Article  Google Scholar 

  • Glew, J., 1991. Miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology 25: 101–110.

    Google Scholar 

  • Guilizzoni, P., A. Marchetto, A. Lami, F. Oldfield, M. Manca, C. A. Belis, A. M. Nocentini, P. Comoli, V. J. Jones, S. Juggins, C. Chondrogianni, D. Ariztegui, J. J. Lowe, D. B. Ryves, E. Devoy, R. W. Battarbee, T. C. Rolph & J. Massaferro, 2000. Evidence for short-lived oscillations in the biological records from the sediments of Lago Albano (Central Italy) spanning the period ca. 28 to 17 kyr BP. Journal of Paleolimnology 23: 117–127.

    Article  Google Scholar 

  • Hansen, B. P. & W. W. Lapham, 1992. Geohydrology and simulated groundwater flow, Plymouth-Carver aquifer, Southeastern Massachusetts. United States Geological Survey Water Resources Investigation Report 90-4204, Marlborough (MA), USA.

  • Heegaard, E., A. F. Lotter & H. J. B. Birks, 2006. Aquatic biota and the detection of climate change: are there consistent aquatic ecotones? Journal of Paleolimnology 35: 507–518.

    Article  Google Scholar 

  • Heiri, O., 2004. Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. Journal of Paleolimnology 32: 67–84.

    Article  Google Scholar 

  • Heiri, O. & A. F. Lotter, 2005. Holocene and lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34: 506–516.

    Article  Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetation 42: 47–58.

    Article  Google Scholar 

  • Hofmann, W., 1984. Stratigraphie subfossiler Cladocera (Crustacea) and Chironomidae (Diptera) in zwei Sedimentprofilen des Meerfelder Maares. Courier Forschungs Institut Senckenberg 65: 67–80.

    Google Scholar 

  • Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.

    Article  Google Scholar 

  • Holmes, N., P. G. Langdon & C. J. Caseldine, 2009. Subfossil chironomid variability in surface sediment samples from Icelandic lakes: implications for the development and use of training sets. Journal of Paleolimnology 42: 281–295.

    Article  Google Scholar 

  • Juggins, S., 2003. C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. University of Newcastle, Newcastle upon Tyne.

    Google Scholar 

  • Kansanen, P. H., 1986. Information value of chironomid remains in the uppermost sediment layers of a complex lake basin. Hydrobiologia 143: 159–165.

    Article  CAS  Google Scholar 

  • Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.

    Article  Google Scholar 

  • Kurek, J. & L. C. Cwynar, 2009a. Effects of within-lake gradients on the distribution of fossil chironomids from maar lakes in western Alaska: implications for environmental reconstructions. Hydrobiologia 623: 37–52.

    Article  Google Scholar 

  • Kurek, J. & L. C. Cwynar, 2009b. The potential of site-specific and local chironomid-based inference models for reconstructing past lake levels. Journal of Paleolimnology 42: 37–50.

    Article  Google Scholar 

  • Langdon, P. G., Z. Ruiz, K. P. Brodersen & I. D. L. Foster, 2006. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biology 51: 562–577.

    Article  CAS  Google Scholar 

  • Langdon, P. G., Z. Ruiz, S. Wynne, C. D. Sayer & T. A. Davidson, 2010. Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshwater Biology 55: 531–545.

    Article  CAS  Google Scholar 

  • Larocque, I., R. I. Hall & E. Grahn, 2001. Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). Journal of Paleolimnology 26: 307–322.

    Article  Google Scholar 

  • Larocque, I., R. Pienitz & N. Rolland, 2006. Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Canadian Journal of Fisheries and Aquatic Sciences 63: 1286–1297.

    Article  Google Scholar 

  • Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population, dynamics and production. Oikos 64: 257–304.

    Article  Google Scholar 

  • Lotter, A. F., & S. Juggins, 1991. POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. Inqua-Subcommission for the study of the Holocene, Working Group on Data-Handling Methods, Newsletter 6: 4–6.

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology 19: 443–463.

    Article  Google Scholar 

  • Luoto, T. P., 2009. A Finnish chironomid- and chaoborid-based inference model for reconstructing past lake levels. Quaternary Science Reviews 28: 1481–1489.

    Article  Google Scholar 

  • Luoto, T. P., 2010. Hydrological change in lakes inferred from midge assemblages through the use of an intralake calibration dataset. Ecological Monographs 80: 303–329.

    Article  Google Scholar 

  • Moller Pillot, H. K. M. & R. F. M. Buskens, 1990. De larven der nederlandse Chironomidae (Diptera) Deel C: Autoekologie en verspreiding. Nederlandse Faunistische Mededelingen 1C: 1–87.

    Google Scholar 

  • Muniz, I. P., 1990. Freshwater acidification: its effects on species and communities of freshwater microbes, plants and animals. Proceedings of the Royal Society of Edinburgh 97B: 237–254.

    Google Scholar 

  • Newby, P. E., J. P. Donnelly, B. N. Shuman & D. MacDonald, 2010. Evidence of centennial-scale drought from southeastern Massachusetts during the Pleistocene/Holocene transition. Quaternary Science Reviews 17–18: 1675–1692.

    Google Scholar 

  • Oliver, D. R. & M. E. Roussel, 1983. The Insects and Arachnids of Canada part 11: The Genera of Larval Midges of Canada. Diptera-Chironomidae. Agriculture Canada, Ontario.

    Google Scholar 

  • Palmer, S. L., I. R. Walker, M. L. Heinrichs, R. J. Hebda & G. G. Scudder, 2002. Postglacial midge community change and Holocene paleotemperature reconstructions near treeline, southern British Columbia (Canada). Journal of Paleolimnology 28: 469–490.

    Article  Google Scholar 

  • Porinchu, D. F. & L. C. Cwynar, 2000. The distribution of freshwater Chironomidae (Insecta: Diptera across treeline near the lower Lena River, northeast Siberia. Arctic, Antarctic and Alpine Research 32: 429–437.

    Article  Google Scholar 

  • Porinchu, D. F. & L. C. Cwynar, 2002. Late Quaternary history of midge communities and climate from a tundra site near the lower Lena River, northeast Siberia. Journal of Paleolimnology 27: 59–69.

    Article  Google Scholar 

  • Porinchu, D. F. & G. M. MacDonald, 2003. The use and application of freshwater midges (Chironomidae: insecta: diptera) in geographical research. Progress in Physical Geography 27: 378–422.

    Article  Google Scholar 

  • Porinchu, D. F., G. M. MacDonald, A. Bloom & K. A. Moser, 2002. The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstruction. Journal of Paleolimnology 28: 275–355.

    Article  Google Scholar 

  • Porinchu, D. F., G. M. MacDonald, A. Bloom & K. A. Moser, 2003. Late Pleistocene and early Holocene climate and limnological changes in the Sierra Nevada, California, USA inferred from midges (Insecta: Diptera: Chironomidae). Palaeogeography, Palaeoclimatology, Palaeoecology 198: 403–422.

    Article  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 342–372.

    Article  Google Scholar 

  • R Development Core Team, 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.

  • Saether, O. A., 1977. Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys. Bulletin of the Fisheries Research Board of Canada 197: 1–209.

    Google Scholar 

  • Saether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.

    Google Scholar 

  • Schmäh, A., 1993. Variation among fossil chironomid assemblages in surficial sediments of Bodensee-Untersee (SW Germany): implications for paleolimnological interpretation. Journal of Paleolimnology 9: 99–108.

    Article  Google Scholar 

  • Shuman, B., J. Bravo, J. Kaye, J. A. Lynch, P. Newby & T. Webb III, 2001. Late-Quaternary water-level variations and vegetation history at Crooked Pond, southeastern Massachusetts. Quaternary Research 56: 401–410.

    Article  Google Scholar 

  • ter Braak, C. F. J. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDRAW for Windows User’s Guide: Software for Canonical Community Ordination (v 4.5). Microcomputer Power, Ithaca.

    Google Scholar 

  • Thienemann, A., 1922. Die beiden Chironomusarten der Tiefenfauna der norddeutschen Seen. Ein hydrobiologisches Problem. Archiv für Hydrobiologie 13: 609–646.

    Google Scholar 

  • Walker, I. R., 1987. Chironomidae (Diptera) in paleoecology. Quaternary Science Reviews 6: 29–40.

    Article  Google Scholar 

  • Walker, I. R., 1988. Late Quaternary Palaeoecology of Chironomidae (Insecta: Diptera) in Lake Sediments from British Columbia. Simon Fraser University, Burnaby.

    Google Scholar 

  • Walker, I. R. & L. C. Cwynar, 2006. Midges and palaeotemperature reconstruction—the North American experience. Quaternary Science Reviews 25: 1911–1925.

    Article  Google Scholar 

  • Walker, I. R. & G. M. MacDonald, 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arctic and Alpine Research 27: 258–263.

    Article  Google Scholar 

  • Walker, I. R. & R. W. Matthewes, 1989. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its paleoenvironmental significance. Journal of Paleolimnology 2: 1–14.

    Article  Google Scholar 

  • Walker, I. R., C. H. Fernando & C. G. Paterson, 1984. The chironomid fauna of four shallow, humic lakes and their representation by subfossil assemblages in the surficial sediments. Hydrobiologia 112: 61–67.

    Article  Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48: 975–987.

    Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses, Part I. Larvae. Entomologica Scandinavica Supplement 19: 1–457.

    Google Scholar 

  • Woodward, C. A. & J. Schulmeister, 2006. New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). Journal of Paleolimnology 36: 407–429.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Nancy Zhou, Sjoerd Bohnke, Toine Bostelen, Daniel LeBouthillier and Andrew Rees for assistance during fieldwork. Andrew Rees also provided invaluable assistance with the PLR analyses and commented on an earlier draft of this manuscript. We are thankful for permission to perform fieldwork at Crooked Pond, which was granted by Stephanie Koch (US Fish and Wildlife Service). We’d furthermore like to thank the Hyslop family for permission to work on their property at Bloody Pond. Steve Brooks, Ann Dieffenbacher-Krall, Donna Francis, Oliver Heiri, and Ian Walker are thanked for their help with the identification of some of the rare taxa that were encountered during this project. Two anonymous reviewers are thanked for their useful feedback and suggestions. Funding by the Niels Stensen Foundation for SE is greatly appreciated. This research was funded in part by a Discovery Grant to LCC from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Engels.

Additional information

Handling editor: Jasmine Saros

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engels, S., Cwynar, L.C. Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665, 15–38 (2011). https://doi.org/10.1007/s10750-011-0601-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0601-z

Keywords

Navigation