Skip to main content
Log in

Effects of animal density, volume, and the use of 2D/3D recording on behavioral studies of copepods

  • ZOOPLANKTON ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Studies on the behavior of copepods require both an appropriate experimental design and the means to perform objectively verifiable numerical analysis. Despite the growing number of publications on copepod behavior, it has been difficult to compare these studies. In this study, we studied two species of copepods, Eurytemora affinis and Pseudodiaptomus annandalei, and employed recently developed scaling and non-scaling methodology to investigate the effects of density and volume on the swimming behavior of individual organisms in still water. We also compared the results of two- and three-dimensional projections of the swimming tracks. A combination of scale-dependent and scale-independent analysis was found to characterize a number of behavioral observations very effectively. We discovered that (i) density has no effect except to increase the time spent in the swimming state of “breaking”, (ii) smaller volumes resulted in more complex trajectories, and larger volumes, like density, increased the time spent in the swimming state “breaking”, and (iii) three-dimensional projections gave a more accurate estimation of speed and the time spent cruising. When only a vertical 2D projection was used, “cruising” could be confused with “sinking”. These results indicate that both experimental conditions and the selection of 2D or 3D projection have important implications regarding the study of copepod behavior. The development of standardized procedures with which to compare the observations made in different studies is an issue of particular urgency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold, G. W. & R. A. Maller, 1985. An analysis of factors influencing spatial-distribution in flocks of grazing sheep. Applied Animal Behaviour Science 14: 173–189.

    Article  Google Scholar 

  • Bagøien, E. & T. Kiørboe, 2005a. Blind dating – mate finding in planktonic copepods. I. Tracking the pheromone trail of Centropages typicus. Marine Ecology Progress Series 300: 105–115.

    Article  Google Scholar 

  • Bagøien, E. & T. Kiørboe, 2005b. Blind dating – mate finding in planktonic copepods. III. Hydromechanical communication in Acartia tonsa. Marine Ecology Progress Series 300: 129–133.

    Article  Google Scholar 

  • Buskey, E. J., 1984. Swimming pattern as an indicator of the roles of copepod sensory systems in the recognition of food. Marine Biology 79: 165–175.

    Article  Google Scholar 

  • Buskey, E. J., J. O. Peterson & J. W. Ambler, 1996. The swarming behavior of the copepod Dioithona oculata: in situ and laboratory studies. Limnology and Oceanography 41: 512–528.

    Article  Google Scholar 

  • Camus, T. & C. Zeng, 2009. The effects of stocking density on egg production and hatching success cannibalism rate, sex ratio and population growth of the tropical calanoid copepod Acartia sinjiensis. Aquaculture 287: 145–151.

    Article  Google Scholar 

  • Capparoy, P., M. T. Perez & F. Carlotti, 1998. Feeding behaviour of Centropages typicus in calm and turbulent conditions. Marine Ecology Progress Series 168: 109–118.

    Article  Google Scholar 

  • Chen, Q. X., J. Q. Sheng, Q. Lin, Y. Gao & J. Lu, 2006. Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annadalei Sewell, 1919. Aquaculture 258: 575–582.

    Article  CAS  Google Scholar 

  • Cheng, S. H., H. C. Chen & T. I. Chen, 2002. The feasibility of growing copepod, Pseudodiaptomus annandalei by adding artificial fermented liquid in laboratory condition. 2002 Annual Report. Fisheries Research Institute (in Chinese).

  • Choi, K.-H. & W. J. Kimmerer, 2008. Mate limitation in an estuarine population of copepods. Limnology and Oceanography 53: 1656–1664.

    Article  Google Scholar 

  • David, V., B. Sautour, P. Chardy & M. Leconte, 2005. Long-term changes of the zooplankton variability in a turbid environment: the Gironde estuary (France). Estuarine Coastal and Shelf Science 64: 171–184.

    Article  Google Scholar 

  • Davis, C., S. Gallager, M. Marra & W. Kenneth Stewart, 1996. Rapid visualization of plankton abundance and taxonomic composition using the Video Plankton Recorder. Deep-Sea Research 43: 1947–1970.

    Article  Google Scholar 

  • Devreker, D., S. Souissi, J. Forget-Leray & F. Leboulenger, 2007. Effects of salinity and temperature on the post-embryonic development of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. Journal of Plankton Research 29: 117–133.

    Article  Google Scholar 

  • Devreker, D., S. Souissi, J. C. Molinero & F. Nkubito, 2008. Trade-offs of the copepod Eurytemora affinis in mega-tidal estuaries: insights from high frequency sampling in the Seine estuary. Journal of Plankton Research 30: 1329–1342.

    Article  Google Scholar 

  • Devreker, D., S. Souissi, G. Winkler, J. Forget-Leray & F. Leboulenger, 2009. Effects of salinity, temperature and individual variability on the reproduction of Eurytemora affinis (Copepoda: Calanoida) from the Seine Estuary: a laboratory study. Journal of Experimental Marine Biology and Ecology 368: 113–123.

    Article  Google Scholar 

  • Doall, M. H., S. P. Colin, J. R. Strickler & J. Yen, 1998. Locating a mate in 3D; the case of Temora longicornis. Philosophical Transactions of the Royal Society London B 350: 681–689.

    Article  Google Scholar 

  • Doall, M. H., J. R. Strickler, D. M. Fields & J. Yen, 2002. Mapping the free swimming attack volume of a planktonic copepod Euchaeta rimana. Marine Biology 140: 871–879.

    Article  Google Scholar 

  • Dur, G., S. Souissi, F. G. Schmitt, S. H. Cheng & J. S. Hwang, 2010. The different aspects in motion of the three reproductive stages of Pseudodiaptomus annandalei (Copepoda, Calanoida). Journal of Plankton Research 32: 423–440.

    Article  Google Scholar 

  • Estevez, I. & M. C. Christman, 2006. Analysis of the movement and use of space of animals in confinement: the effect of sampling effort. Applied Animal Behaviour Science 97: 221–240.

    Article  Google Scholar 

  • Goetze, E., 2008. Heterospecific mating and partial prezygotic reproductive isolation in the planktonic marine copepods Centropages typicus and Centropages hamatus. Limnology and Oceanography 53: 433–445.

    Article  Google Scholar 

  • Golez, M. S. N., T. Takahashi, T. Ishimaru & A. Ohno, 2004. Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida). Plankton Biology and Ecology 51: 15–25.

    Google Scholar 

  • Jepsen, P. M., N. Andersen, T. Holm, A. T. Jorgensen, J. K. Hojgaard & B. Hansen, 2007. Effects of adult stocking density on egg production and variability in cultures of the calanoid copepod Acartia tonsa (Dana). Aquaculture Research 38: 764–772.

    Article  Google Scholar 

  • Kiørboe, T., 2006. Sex, sex-ratio and the dynamics of copepod populations. Oecologia 148: 40–50.

    Article  PubMed  Google Scholar 

  • Kiørboe, T., 2007. Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnology and Oceanography 52: 1511–1522.

    Article  Google Scholar 

  • Kiørboe, T., 2008. Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155: 179–192.

    Article  PubMed  Google Scholar 

  • Kiørboe, T. & E. Bagøien, 2005. Motility patterns and mate encounter rates in planktonic copepods. Limnology and Oceanography 50: 1999–2007.

    Article  Google Scholar 

  • Kiørboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series 143: 64–75.

    Article  Google Scholar 

  • Kokko, H. & D. J. Rankin, 2006. Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philosophical Transactions of the Royal Society B 361: 319–334.

    Article  Google Scholar 

  • Kondo, S., J. Sekine, M. Okubo & Y. Asahida, 1989. The effect of group-size and space allowance on the agonistic and spacing behaviour of cattle. Applied Animal Behaviour Science 24: 127–135.

    Article  Google Scholar 

  • Leising, A. W., 2001. Copepod foraging in patchy habitats and thin layers using a 2-D individual-based model. Marine Ecology Progress Series 216: 167–179.

    Article  Google Scholar 

  • Leising, A. W. & P. J. S. Franks, 2000. Copepod vertical distribution within a spatially variable food source: a simple foraging-strategy model. Journal of Plankton Research 22: 999–1024.

    Article  Google Scholar 

  • Lindström, M. & W. Fortelius, 2001. Swimming behavior in Monopreia affinis (Crustacea: Amphipoda) – dependence on temperature and population density. Journal of Experimental Marine Biology and Ecology 256: 73–83.

    Article  PubMed  Google Scholar 

  • Mazzocchi, M. G. & G. A. Paffenhöfer, 1999. Swimming and feeding behavior of the planktonic copepod Clausocalanus furcatus. Journal of Plankton Research 21: 1501–1518.

    Article  Google Scholar 

  • Medina, M. & C. Barata, 2004. Static-renewal culture of Acartia tonsa (Copepoda: Calanoida) for ecotoxicological testing. Aquaculture 229: 203–213.

    Article  Google Scholar 

  • Michalec, F. G., S. Souissi, G. Dur, M.-S. Mahjoub, F. G. Schmitt & J. S. Hwang, 2010. Differences in behavioural responses of Eurytemora affinis (Copepoda, Calanoida) adults to salinity variations. Journal of Plankton Research 32: 805–813.

    Article  Google Scholar 

  • Moison, M., 2009. Approche expérimentale et numérique du comportement individuel de Temora longicornis, copépode typique de la Manche Orientale : réponses aux forçages biotiques et abiotiques. Ph.D. thesis. Universite de Lille I – Sciences et Technologies, Station Marine de Wimereux.

  • Moison, M., F. G. Schmitt, S. Souissi, L. Seuront & J. S. Hwang, 2009. Symbolic dynamics and entropies of copepod behavior under non-turbulent and turbulent conditions. Journal of Marine Systems 77: 388–396.

    Article  Google Scholar 

  • Monin, A. S. & A. M. Yaglom, 1975. Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, Cambridge.

    Google Scholar 

  • Mouny, P. & J. C. Dauvin, 2002. Environmental control of mesozooplankton community in the Seine estuary (English Channel). Oceanologica Acta 25: 13–22.

    Article  Google Scholar 

  • Nihongi, A., S. B. Lovern & J. R. Strickler, 2004. Mate searching behaviors in the fresh calanoid copepod Leptodiaptomus ashlandi. Journal of Marine Systems 49: 65–74.

    Article  Google Scholar 

  • Ohman, M. D. & H. J. Hirche, 2001. Density-dependant mortality in an oceanic copepod population. Nature 412: 638–641.

    Article  PubMed  CAS  Google Scholar 

  • Paffenhöfer, G. A. & M. G. Mazzocchi, 2002. On some aspects of the behavior of Oithona plumifera (Copepoda: Cyclopoida). Journal of Plankton Research 24: 129–135.

    Article  Google Scholar 

  • Peck, M. A. & L. Holste, 2006. Effect of salinity, photoperiod adult stocking density on egg production and egg hatching success in Acartia tonsa (Calanoida: Copepoda): optimizing intensive cultures. Aquaculture 255: 341–350.

    Article  Google Scholar 

  • Pollard, J. C. & R. P. Littlejohn, 1996. The effects of pen size on the behaviour of farmed red deer stags confined in yards. Applied Animal Behaviour Science 47: 247–253.

    Article  Google Scholar 

  • Saiz, E., 1994. Observation of the free-swimming behavior of Acartia tonsa: effects of food concentration and turbulent water motion. Limnology and Oceanography 39: 1566–1578.

    Article  Google Scholar 

  • Saiz, E. & M. Alcaraz, 1992. Free swimming behaviour of Acartia clausi (Copepoda: Calanoida) under turbulent water movement. Marine Ecology Progress Series 80: 229–236.

    Article  Google Scholar 

  • Schmitt, F. G. & L. Seuront, 2001. Multifractal randomwalk in copepod behavior. Physica A 301: 375–396.

    Article  Google Scholar 

  • Schmitt, F. G., L. Seuront, J. S. Hwang, S. Souissi & L. C. Tseng, 2006. Scaling of swimming sequences in copepod behavior: data analysis and simulation. Physica A 364: 287–296.

    Article  Google Scholar 

  • Seuront, L., 2006. Effect of salinity on the swimming behaviour of the estuarine calanoid copepod Eurytemora affinis. Journal of Plankton Research 28: 805–813.

    Article  Google Scholar 

  • Seuront, L. & Y. Lagadeuc, 2001. Multiscale patchiness of the calanoid copepod Temora longicornis in a turbulent coastal sea. Journal of Plankton Research 23: 1137–1145.

    Article  Google Scholar 

  • Seuront, L. & D. Vincent, 2008. Increased seawater viscosity, Phaeocystis globosa spring bloom and Temora longicornis feeding and swimming behaviors. Marine Ecology Progress Series 363: 131–145.

    Article  CAS  Google Scholar 

  • Seuront, L., M. C. Brewer & J. R. Strickler, 2004a. Quantifying zooplankton swimming behavior: the question of scale. In Seuront, L. & P. G. Strutton (eds), Handbook in Scaling Methods in Aquatic Ecology: Measurement, Analysis Simulation. CRC Press, Boca Raton: 333–359.

    Google Scholar 

  • Seuront, L., H. Yamazaki & S. Souissi, 2004b. Hydrodynamic disturbance and zooplankton swimming behavior. Zoological Studies 43: 376–387.

    Google Scholar 

  • Seuront, L., F. G. Schmitt, M. C. Brewer, J. R. Strickler & S. Souissi, 2004c. From random walk to multifractal random walk in zooplankton swimming behavior. Zoological Studies 43: 498–510.

    Google Scholar 

  • Seuront, L., J. S. Hwang, L. C. Tseng, S. Souissi & F. G. Schmitt, 2004d. Individual variability in the swimming behavior of the sub-tropical copepod Oncaea venusta (Copepoda: Poecilostomatoida). Marine Ecology Progress Series 283: 199–217.

    Article  Google Scholar 

  • Strickler, J. R., 1975. Intra- and interspecific information flow around planktonic copepod receptors. Verhandlungen der Internationalen Vereinigung fur Limnology 19: 2951–2958.

    Google Scholar 

  • Strickler, J. R., 1982. Calanoid copepods, feeding currents, and the role of gravity. Science 218: 158–160.

    Article  PubMed  CAS  Google Scholar 

  • Strickler, J. R. & J. S. Hwang, 1999. Matched spatial filters in long working distance microscopy of phase objects. In Wu, J. L., P. P. Hwang, G. Wong, H. Kim & P. C. Cheng (eds), Focus on Multidimensional Microscopy. World Scientific Publishing Co., Singapore: 217–239.

    Google Scholar 

  • Tiselius, P., 1992. Behavior of Acartia tonsa in patchy food environments. Limnology and Oceanography 37: 1640–1651.

    Article  Google Scholar 

  • Tiselius, P. & P. R. Jonsson, 1990. Foraging behavior of six calanoid copepods: observations and hydrodynamic analysis. Marine Ecology Progress Series 66: 23–33.

    Article  Google Scholar 

  • Titelman, J., 2001. Swimming and escape of copepod nauplii; implication of predations for predator–prey interactions among copepods. Marine Ecology Progress Series 213: 203–213.

    Article  Google Scholar 

  • Titelman, J. & T. Kiørboe, 2003. Motility of copepod nauplii and implication for food encounter. Marine Ecology Progress Series 247: 123–135.

    Article  Google Scholar 

  • Tsuda, A. & C. B. Miller, 1998. Mate-finding behaviour in Calanus marshallae Frost. Philosophical Transactions of the Royal Society London B 353: 713–720.

    Article  Google Scholar 

  • Uttieri, M., M. G. Mazzocchi, A. Nihongi, M. Ribera, J. d’Alcala, R. Strickler & E. Zambianchi, 2004. Lagrangian description of zooplankton swimming trajectories. Journal of Plankton Research 26: 99–105.

    Article  Google Scholar 

  • Uttieri, M., E. Zambianchi, J. R. Strickler & M. G. Mazzocchi, 2005. Fractal characterization of three-dimensional zooplankton swimming trajectories. Ecological Modelling 185: 51–63.

    Article  Google Scholar 

  • Uttieri, M., A. Nihongi, M. G. Mazzocchi, J. R. Strickler & E. Zambianchi, 2007. Pre-copulatory swimming behavior of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. Journal of Plankton Research 29: 117–126.

    Google Scholar 

  • Uye, S. I. & K. Kano, 1998. Seasonal variations in biomass, growth rate and production rate of small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Marine Ecology Progress Series 163: 37–44.

    Article  Google Scholar 

  • Van Leeuwen, H. C. & E. J. Maly, 1991. Change in swimming behaviour of male Diaptomus leptopus (Copepoda: Calanoida) in response to gravid females. Limnology and Oceanography 36: 1188–1195.

    Article  Google Scholar 

  • VanderLugt, K. & P. H. Lenz, 2008. Management of nauplius production in the paracalanid, Bestiolina similes (Crustacean: Copepoda) effect of stocking densities and culture dilution. Aquaculture 276: 69–77.

    Article  Google Scholar 

  • VanDuren, L. A. & J. J. Videler, 1995. Swimming behaviour of development stages of the calanoid copepod Temora longicornis at different food concentrations. Marine Ecology Progress Series 126: 153–161.

    Article  Google Scholar 

  • VanDuren, L. A. & J. J. Videler, 1996. The trade-off between feeding, mate seeking and predator–prey avoidance in copepods: behavioural responses to chemical cues. Journal of Plankton Research 18: 805–818.

    Article  Google Scholar 

  • Waggett, R. J. & E. J. Buskey, 2007a. Calanoid copepod escape behaviour in response to a visual predator. Marine Biology 150: 599–607.

    Article  Google Scholar 

  • Waggett, R. J. & E. J. Buskey, 2007b. Copepod escape behaviour in non-turbulent and turbulent hydrodynamic regimes. Marine Ecology Progress Series 334: 193–198.

    Article  Google Scholar 

Download references

Acknowledgments

The French segment of the research on E. affinis was funded by the Seine-Aval program. It is a contribution to the ZOOSEINE project financed by Seine-Aval IV scientific program. The Taiwanese segment was supported by grants NSC 97-2621-B-019-001 from the National Science Council of Taiwan and from National Taiwan Ocean University (CMBB 97529002A9) to J. S. Hwang. The authors are indebted to Michel Priem, Daniel Hilde, and Dominique Menu for helping with E. affinis sampling, to David Devreker for his help with E. affinis sorting, and to Delphine Beyrend-Dur for her help with P. annandalei sampling and sorting. This study is part of the bilateral CNRS-NSC Taiwan project no. 17473 entitled “Study of behavioral activity and spatial and temporal distribution of copepods in two contrasting ecosystems: temperate (France) and sub-tropical (Taiwan).” This study is a contribution to the co-tutorial Ph.D. project of G. Dur between National Taiwan Ocean University and the University of Sciences and Technologies of Lille. We thank the reviewers for significant contribution they have made in the revised version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Shiou Hwang.

Additional information

Guest editors: J.-S. Hwang and K. Martens / Zooplankton Behavior and Ecology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dur, G., Souissi, S., Schmitt, F. et al. Effects of animal density, volume, and the use of 2D/3D recording on behavioral studies of copepods. Hydrobiologia 666, 197–214 (2011). https://doi.org/10.1007/s10750-010-0586-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0586-z

Keywords

Navigation