, Volume 663, Issue 1, pp 217–232 | Cite as

Seasonal and spatial variability of sediment bacterial communities inhabiting the large shallow Lake Balaton

  • Gitta Szabó
  • Bernadett Khayer
  • Anna Rusznyák
  • István Tátrai
  • György Dévai
  • Károly Márialigeti
  • Andrea K. BorsodiEmail author
Primary research paper


Seasonal studies of surface sediment bacterial communities, from two basins with differing trophic states within Lake Balaton (Hungary), were carried out using molecular (denaturing gradient gel electrophoresis, DGGE) and cultivation-based techniques. The presence of polyphosphate accumulates was tested using Neisser staining, and phosphatase activity was investigated on organic phosphorus (P) compound. Aerobic viable cell counts were significantly higher in the eutrophic than mesotrophic basin in each season. The lowest viable counts were observed in the autumn and the highest in spring and summer month in both basins. The DGGE fingerprints of the samples reflected that the composition of sediment bacterial communities in the two basins were distinct in spring and summer, and similar in autumn, but similarly diverse in all seasons. On the basis of partial 16S rDNA sequences, the 216 strains were affiliated with six major bacterial lineages: Firmicutes; Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Common species characterized from both basins constituted up to 66% of all identified phylotypes. Strains related to Bacillus sp. were dominant in all but one sample. Isolates affiliated with Aeromonas sp. prevailed in the sample taken from the mesotrophic basin in spring. The majority of the strains showed excess poly-P accumulation. Association of Neisser staining and phosphatase activity test results suggested that excess poly-P accumulation serves as P storage for sediment bacteria. Our study implied the importance of Firmicutes, Actinobacteria, Alphaproteobacteria, and Aeromonas species in benthic bacterial P retention.


Lake Balaton Sediment bacterial communities DGGE Cultivation Polyphosphate-accumulating bacteria 



We gratefully acknowledge Anne Kathryn Kauffman for reviewing the manuscript. This study was supported by the Hungarian National Science Foundation (OTKA) T048758.


  1. Altschul, S., T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller & D. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.CrossRefPubMedGoogle Scholar
  2. Agarwal, A. K. & G. S. Rajwar, 2010. Physico-chemical and microbiological study of Tehri dam reservoir, Garhwal Himalaya, India. Journal of American Science 6: 65–71.Google Scholar
  3. Barak, Y. & J. van Rijn, 2000. Relationship between nitrite reduction and active phosphate uptake in the phosphate-accumulating denitrifier Pseudomonas sp. strain JR 12. Applied and Environmental Microbiology 66: 5236–5240.CrossRefPubMedGoogle Scholar
  4. Barrow, G. I. & R. K. A. Feltham, 2003. Cowan and Steels’s Manual for the Identification of Medical Bacteria. Cambridge University Press, Cambridge: 235.Google Scholar
  5. Bolier, G., M. C. J. Koningh, J. C. Schmale & M. Donze, 1992. Differential luxury phosphate response of planktonic algae to phosphorus removal. Hydrobiologia 243–244: 113–118.CrossRefGoogle Scholar
  6. Borsodi, A. K., A. Rusznyák, P. Molnár, P. Vladár, P. N. M. Reskóné, M. E. Tóth, R. Sipos, G. Gedeon & K. Márialigeti, 2007. Metabolic activity and phylogenetic diversity of reed (Phragmites australis) periphyton bacterial communities in a Hungarian shallow soda lake. Microbial Ecology 53: 612–620.CrossRefPubMedGoogle Scholar
  7. Chun, J., J. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim & Y. Lim, 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology 57: 2259–2261.CrossRefPubMedGoogle Scholar
  8. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, A. M. Bandela, E. Cardenas, G. M. Garrity & J. M. Tiedje, 2007. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research 35: 169–172.CrossRefGoogle Scholar
  9. Cotner, J. B. & R. G. Wetzel, 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnology and Oceanography 37: 232–243.CrossRefGoogle Scholar
  10. Davelaar, D., 1993. Ecological significance of bacterial polyphosphate metabolism in sediments. Hydrobiologia 253: 179–192.CrossRefGoogle Scholar
  11. Dévai, G., 1990. Ecological background and importance of the change of chironomid fauna, (Diptera: Chironomidae) in shallow Lake Balaton. Hydrobiologia 191: 189–198.CrossRefGoogle Scholar
  12. Eixler, S., U. Karsten & U. Selig, 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45: 53–60.CrossRefGoogle Scholar
  13. Felske, A., A. Wolterink, R. Lis, W. M. Vos & A. D. Akkermans, 1999. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiology Ecology 30: 137–145.CrossRefPubMedGoogle Scholar
  14. Gächter, R. & J. S. Meyer, 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103–121.CrossRefGoogle Scholar
  15. Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnology and Oceanography 33: 1542–1558.CrossRefGoogle Scholar
  16. Gloess, S., H.-P. Grossart, M. Allgaier, S. Ratering & M. Hupfer, 2008. Use of laser microdissection for phylogenetic characterization of polyphosphate-accumulating bacteria. Applied and Environmental Microbiology 74: 4231–4235.CrossRefPubMedGoogle Scholar
  17. Goedkoop, W., K. Gullberg, R. Johnson & I. Ahlgren, 1997. Microbial response of a freshwater benthic community to a simulated diatom sedimentation event: interactive effects of benthic fauna. Microbial Ecology 34: 131–143.CrossRefPubMedGoogle Scholar
  18. Halpern, M., Y. Senderovich & S. Snir, 2007. Rheinheimera chironomi sp. nov., isolated from a chironomid, (Diptera; Chironomidae) egg mass. International Journal of Systematic and Evolutionary Microbiology 57: 1872–1875.CrossRefPubMedGoogle Scholar
  19. Herodek, S., 1984. The eutrophication of Lake Balaton: measurements, modeling and management. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 22: 1087–1091.Google Scholar
  20. Heyman, J. B., L. M. Eagle, H. A. Greben & D. J. J. Potgieter, 1989. Isolation and characterization of volutin granules as subcellular components involved in biological phosphorous removal. Water Science and Technology 21: 397–408.Google Scholar
  21. Hupfer, M., B. Rübe & P. Schmieder, 2004. Origin and diagenesis of polyphosphate in lake sediments: a 31P-NMR study. Limnology and Oceanography 49: 1–10.CrossRefGoogle Scholar
  22. Hupfer, M., S. Gloess & H.-P. Grossart, 2007. Polyphosphate-accumulating microorganisms in aquatic sediments. Aquatic Microbial Ecology 47: 299–311.CrossRefGoogle Scholar
  23. Hupfer, M., S. Glöss, P. Schmieder & H.-P. Grossart, 2008. Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments. International Review of Hydrobiology 93: 1–30.CrossRefGoogle Scholar
  24. Istvánovics, V., 1993. Transformations between organic and inorganic sediment phosphorus in Lake Balaton. Hydrobiologia 253: 193–201.CrossRefGoogle Scholar
  25. Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G. Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton, Hungary, recovering from eutrophication. Hydrobiologia 581: 305–318.CrossRefGoogle Scholar
  26. Jacobson, L. & M. Halmann, 1982. Polyphosphate metabolism in the blue-green alga Microcystis aeruginosa. Journal of Plankton Research 4: 481–488.CrossRefGoogle Scholar
  27. Jenkins, D. & V. Tandoi, 1991. The applied microbiology of enhanced biological phosphate removal-accomplishments and needs. Water Research 25: 1471–1478.CrossRefGoogle Scholar
  28. Jenkins, D., M. G. Richard & G. T. Daigger, 2004. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems. IWA Publishing, London.Google Scholar
  29. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. L. Kangur, J. Köhler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Wille & M. Winder, 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  30. Jooste, P. J. & C. J. Hugo, 1999. The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. International Journal of Food Microbiology 53: 81–94.CrossRefPubMedGoogle Scholar
  31. Jørgensen, K. S. & A. S. Pauli, 1995. Polyphosphate accumulation among denitrifying bacteria in activated sludge. Anaerobe 1: 161–168.CrossRefPubMedGoogle Scholar
  32. Joshi, A., P. Kanekar, A. Kelkar, Y. Shouche, A. Vani, S. Borgave & S. Sarnaik, 2008. Cultivable bacterial diversity of alkaline Lonar Lake, India. Microbial Ecology 55: 163–172.CrossRefPubMedGoogle Scholar
  33. Kawaharasaki, M., H. Tanaka, T. Kanagawa & K. Nakamura, 1999. In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4′,6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Research 33: 257–265.CrossRefGoogle Scholar
  34. Khoshmanesh, A., B. T. Hart, A. Duncan & R. Beckett, 2002. Luxury uptake of phosphorus by sediment bacteria. Water Research 36: 774–778.CrossRefPubMedGoogle Scholar
  35. Kirchman, D. L., 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology 28: 255–271.CrossRefGoogle Scholar
  36. Kirchman, D. L., 2002. The ecology of cytophaga-flavobacteria in aquatic environments. FEMS Microbiology Ecology 39: 91–100.PubMedGoogle Scholar
  37. Koizumi, Y., H. Kojima & M. Fukui, 2003. Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiology Ecology 46: 147–157.CrossRefPubMedGoogle Scholar
  38. Kulaev, I. & T. Kulakovskaya, 2000. Polyphosphate and phosphate pump. Annual Review of Microbiology 54: 709–734.CrossRefPubMedGoogle Scholar
  39. Lane, D. J., 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & M. Goodfellow (eds), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York: 115–175.Google Scholar
  40. Langó, Z., 1987. Studies on the Bacillus-population of the NW-littoral zone of the Lake Balaton (Hungary). Archiv für Hydrobiologie 108: 449–464.Google Scholar
  41. Langó, Z., A. K. Borsodi & A. Micsinai, 2002. Comparative studies on Aeromonas strains isolated from Lakes Balaton, Hungary and Fertő/Neusiedlersee, Hungary. Acta Microbiologica et Immunologica Hungarica 49: 37–45.CrossRefPubMedGoogle Scholar
  42. Liu, W., A. T. Nielsen, J. Wu, C. Tsai, Y. Matsuo & S. Molin, 2001. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environmental Microbiology 3: 110–122.CrossRefPubMedGoogle Scholar
  43. Long, R., H. Lappin-Scott & J. Stevens, 2009. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples. Biodegradation 20: 521–531.CrossRefPubMedGoogle Scholar
  44. Maassen, S., I. Röske & D. Uhlmann, 2003. Chemical and microbial composition of sediments in reservoirs with different trophic state. International Review of Hydrobiology 88: 508–518.CrossRefGoogle Scholar
  45. Maassen, S., D. Uhlmann & I. Röske, 2005. Sediment and pore water composition as a basis for the trophic evaluation of standing waters. Hydrobiologia 543: 55–70.CrossRefGoogle Scholar
  46. MacGregor, B. J., D. P. Moser, B. J. Baker, E. W. Alm, M. Maurer, K. H. Nealson & D. A. Stahl, 2001. Seasonal and spatial variability in Lake Michigan sediment small-subunit rRNA concentrations. Applied and Environmental Microbiology 67: 3908–3922.CrossRefPubMedGoogle Scholar
  47. Mackereth, F. H. J., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Freshwater Biology Association, Scientific Publication 36, London.Google Scholar
  48. Malmaeus, J. & L. Håkanson, 2004. Development of a lake eutrophication model. Ecological Modelling 171: 35–63.CrossRefGoogle Scholar
  49. Massol-Deya, A. A., D. A. Odelson, R. F. Hickey & J. M Tiedje, 1995. Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In Akkermans, A. D. L., J. D. van Elsas & F. J. de Bruijn (eds), Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht 3.3.2: 1–8.Google Scholar
  50. Mino, T., M. C. M. van Loosdrecht & J. J. Heijnen, 1998. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research 32: 3193–3207.CrossRefGoogle Scholar
  51. Muyzer, G., E. C. de Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59: 695–700.PubMedGoogle Scholar
  52. Nealson, K. H., 1997. Sediment bacteria: who’s there, what are they doing, and what’s new? Annual Review of Earth and Planetary Sciences 25: 403–434.CrossRefPubMedGoogle Scholar
  53. Nold, S. C. & G. Zwart, 1998. Patterns and governing forces in aquatic microbial communities. Aquatic Ecology 32: 17–35.CrossRefGoogle Scholar
  54. O’Sullivan, L. A., A. J. Weightman & J. C. Fry, 2002. New degenerate cytophaga-flexibacter-bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in river taff epilithon. Applied and Environmental Microbiology 68: 201–210.CrossRefPubMedGoogle Scholar
  55. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.CrossRefGoogle Scholar
  56. Poindexter, J. S., 1991. Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Hyphomonas and Thiodendron. In Balows, A., H. G. Trüper, M. Dworkin, W. Harder & K. Schleifer (eds), The Prokaryotes. Springer-Verlag, New York: 2176–2196.Google Scholar
  57. Reitzel, K., J. Ahlgren, A. Gogoll, H. S. Jensen & E. Rydin, 2006. Characterization of phosphorus in sequential extracts from lake sediments using 31P nuclear magnetic resonance spectroscopy. Canadian Journal of Fisheries and Aquatic Sciences 63: 1686–1699.CrossRefGoogle Scholar
  58. Reskóné, N. M., A. Alföldi, G. Kiss, Z. Balogi, M. E. Tóth & A. Borsodi, 2006. Quality of basin sediment and characteristics of microbial communities in Lake Balaton. Hidrológiai Közlöny 86: 155–158. (in Hungarian with English abstract).Google Scholar
  59. Rhodes, M. W. & H. Kator, 1994. Seasonal occurrence of mesophilic Aeromonas spp. as a function of biotype and water quality in temperate freshwater lakes. Water Research 28: 2241–2251.CrossRefGoogle Scholar
  60. Sander, B. C. & J. Kalff, 1993. Factors controlling bacterial production in marine and freshwater sediments. Microbial Ecology 26: 79–99.CrossRefGoogle Scholar
  61. Schallenberg, M. & J. Kalff, 1993. The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems. Ecology 74: 919–934.CrossRefGoogle Scholar
  62. Schulze, R., S. Spring, R. Amann, I. Huber, W. Ludwig, K. H. Schleifer & P. Kampfer, 1999. Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Systematic and Applied Microbiology 22: 205–214.PubMedGoogle Scholar
  63. Serafim, L. S., P. C. Lemos, C. Levantesi, V. Tandoi, H. Santos & M. A. M. Reis, 2002. Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. Journal of Microbiological Methods 51: 1–18.CrossRefPubMedGoogle Scholar
  64. Seviour, R. J., T. Mino & M. Onuki, 2003. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews 27: 99–127.CrossRefPubMedGoogle Scholar
  65. Specziár, A., 2008. Life history patterns of Procladius choreus, Tannypus punctipennis and Chironomus balatonicus in Lake Balaton. Annales de Limnologie-International Journal of Limnology 44: 181–188.CrossRefGoogle Scholar
  66. Spring, S., R. Schulze, J. Overmann & K. Schleifer, 2000. Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation studies. FEMS Microbiology Reviews 24: 573–590.CrossRefPubMedGoogle Scholar
  67. Suzuki, M. & S. Giovannoni, 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62: 625–630.PubMedGoogle Scholar
  68. Tamaki, H., Y. Sekiguchi, S. Hanada, K. Nakamura, N. Nomura, M. Matsumura & Y. Kamagata, 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Applied and Environmental Microbiology 71: 2162–2169.CrossRefPubMedGoogle Scholar
  69. Tátrai, I., V. Istvánovics, L. Tóth & I. Kóbor, 2008. Management measures and long-term water quality changes in Lake Balaton, Hungary. Fundamental and Applied Limnology/Archiv für Hydrobiologie 172: 1–11.CrossRefGoogle Scholar
  70. Tóth, E., 1996. The species composition of oligotrophic bacterial communities of Lake Balaton—a numerical analysis. Acta Microbiologica et Immunologica Hungarica 43: 333–338.PubMedGoogle Scholar
  71. Törnblom, E. & E. Rydin, 1997. Bacterial and phosphorus dynamics in profundal Lake Erken sediments following the deposition of diatoms: a laboratory study. Hydrobiologia 364: 55–63.CrossRefGoogle Scholar
  72. Uhlmann, D. & H. D. Bauer, 1988. A remark on microorganisms in lake-sediments with emphasis on polyphosphate-accumulating bacteria. International Revue of Hydrobiology 73: 703–708.CrossRefGoogle Scholar
  73. V-Balogh K., L. Vörös, N. Tóth & M. Bokros, 2003. Changes of organic matter quality along the longitudinal axis of a large shallow lake, Lake Balaton. Hydrobiologia 506–509: 67–74.CrossRefGoogle Scholar
  74. Waara, T., M. Jansson & K. Pettersson, 1993. Phosphorus composition and release in sediment bacteria of the genus Pseudomonas during aerobic and anaerobic conditions. Hydrobiologia 253: 131–140.CrossRefGoogle Scholar
  75. Wand, H., T. Laht, M. Peters, P. Becker, U. Stottmeister & A. Heinaru, 1997. Monitoring of biodegradative Pseudomonas putida strains in aquatic environments using molecular techniques. Microbial Ecology 33: 124–133.CrossRefPubMedGoogle Scholar
  76. Wang, E. & E. Martínez-Romero, 2000. Sesbania herbaceaRhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating Rhizobia in different environments. Microbial Ecology 40: 25–32.PubMedGoogle Scholar
  77. Warnecke, F., R. Amann & J. Pernthaler, 2004. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environmental Microbiology 6: 242–253.CrossRefPubMedGoogle Scholar
  78. White, P., J. Kalff, J. Rasmussen & J. Gasol, 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology 21: 99–118.CrossRefGoogle Scholar
  79. Wobus, A., C. Bleul, S. Maassen, C. Scheerer, M. Schuppler, E. Jacobs & I. Röske, 2003. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiology Ecology 46: 331–347.CrossRefPubMedGoogle Scholar
  80. Vollenweider, R. A. & J. Kerekes, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD Cooperative programme on monitoring of inland waters (Eutrophication control), Environment Directorate. OECD, Paris: 154.Google Scholar
  81. Zhang, H., Y. Sekiguchi, S. Hanada, P. Hugenholtz, H. Kim, Y. Kamagata & K. Nakamura, 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating microorganism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. International Journal of Systematic and Evolutionary Microbiology 53: 1155–1163.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gitta Szabó
    • 1
    • 3
  • Bernadett Khayer
    • 1
  • Anna Rusznyák
    • 1
  • István Tátrai
    • 2
  • György Dévai
    • 3
  • Károly Márialigeti
    • 1
  • Andrea K. Borsodi
    • 1
    Email author
  1. 1.Department of MicrobiologyEötvös Loránd UniversityBudapestHungary
  2. 2.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary
  3. 3.Department of HydrobiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations