, Volume 663, Issue 1, pp 175–186 | Cite as

Spatial heterogeneity and seasonal succession of phytoplankton along the longitudinal gradient in a eutrophic reservoir

  • Pavel Rychtecký
  • Petr ZnachorEmail author
Primary research paper


In order to evaluate the effects of contrasting hydrological scenarios on the spatial and temporal heterogeneity of phytoplankton in a reservoir, vertical chlorophyll and temperature profiles were measured and functional classification of phytoplankton was applied. From April to October 2007, at 1–2 week intervals, seasonal changes in various parameters were studied along the longitudinal axis of the canyon-shaped, eutrophic Římov Reservoir (Czech Republic). At the river inflow, phytoplankton markedly differed from the rest of the reservoir, being dominated by functional groups D and J (pennate diatoms and chlorococcal algae) without a clear seasonal pattern. From April to mid-June, groups Y and P (large cryptophytes and colonial diatoms) prevailed in the whole reservoir. Phytoplankton spatial heterogeneity was the most apparent during the summer reflecting a pronounced gradient of environmental parameters from the river inflow to the dam (e.g., decreasing nutrients, increasing light availability, etc.). A dense cyanobacterial bloom (groups H1 and M) developed in the nutrient-rich transition zone, while functional Group N (desmids) dominated the phytoplankton at the same time at the dam area. In late summer, a sudden flood event considerably disrupted thermal stratification, altered nutrient and light availability, and later even resulted in cyanobacterial dominance in the whole reservoir. Additionally, our study emphasizes the importance of having an intensive phytoplankton monitoring program, which would allow for detecting severe consequences of sudden flood events on phytoplankton spatial and temporal heterogeneity, which significantly affect water quality at the dam area used for drinking water purposes.


Phytoplankton Reservoir Spatial heterogeneity Seasonal succession Functional classification Flood event 



We are grateful to V. Hejzlarová, J. Kroupová, E. Zapomělová, K. Řeháková, J. Nedoma and J. Hejzlar who either participated in field sampling or laboratory analysis. This study was largely supported by the Grant Agency of the Czech Republic under research grants 206/07/P407, 206/08/0015 and AV0Z60170517. We also thank three anonymous reviewers for their valuable comments on an earlier version of the manuscript. English language correction was done by Keith Edwards.


  1. Armengol, J., J. C. Garcia, M. Comerma, M. Romero, J. Dolz, M. Roura, B. H. Han, A. Vidal & K. Šimek, 1999. Longitudinal processes in canyon type reservoirs: the case of Sau (N.E. Spain). In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and Its Applications. International Institute of Ecology, Brasilian Academy of Sciences and Backuys Publishers, Sao Carlos: 313–345.Google Scholar
  2. Barbiero, R. P., W. F. James & J. W. Barko, 1999. The effects of disturbance events on phytoplankton community structure in a small temperate reservoir. Freshwater Biology 42: 503–512.CrossRefGoogle Scholar
  3. Borges, P. A. F., S. Train & L. C. Rodrigues, 2008. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607: 63–74.CrossRefGoogle Scholar
  4. Calijuri, M. C., A. C. A. Dos Santos & S. Jati, 2002. Temporal changes in the phytoplankton community structure in tropical and eutrophic reservoir (Barra Bonita, SP–Brazil). Journal of Plankton Research 24: 617–634.CrossRefGoogle Scholar
  5. Caputo, L., L. Naselli-Flores, J. Ordonez & J. Armengol, 2008. Phytoplankton distribution along trophic gradients within and among reservoirs in Catalonia (Spain). Freshwater Biology 53: 2543–2556.CrossRefGoogle Scholar
  6. Elber, F. & F. Schanz, 1990. The influence of a flood event on phytoplankton succession. Aquatic Sciences 52: 330–344.CrossRefGoogle Scholar
  7. Godlewska, M., G. Mazurkiewicz-Boron, A. Pociecha, E. Wilk-Wozniak & M. Jelonek, 2003. Effects of flood on the functioning of the Dobczyce reservoir ecosystem. Hydrobiologia 504: 305–313.CrossRefGoogle Scholar
  8. Huszar, V. L. M. & N. F. Caraco, 1998. The relationship between phytoplankton composition and physical–chemical variables: a comparison of taxonomic and morphological–functional descriptors in six temperate lakes. Freshwater Biology 40: 679–696.CrossRefGoogle Scholar
  9. Jacobsen, B. A. & P. Simonsen, 1993. Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia 249: 9–14.CrossRefGoogle Scholar
  10. Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir primary production. In Thornton, K. W., B. L. Kimmel & F. E. Paine (eds), Reservoir Limnology: Ecological Perspectives. Wiley, New York: 133–193.Google Scholar
  11. Leitão, M., S. M. Morata, S. Rodriguez & J. P. Vergon, 2003. The effect of perturbations on phytoplankton assemblages in a deep reservoir Vouglans, France. Hydrobiologia 502: 73–83.CrossRefGoogle Scholar
  12. Lindenschmidt, K. E. & I. Chorus, 1998. The effect of water column mixing on phytoplankton succession, diversity and similarity. Journal of Plankton Research 20: 1927–1951.CrossRefGoogle Scholar
  13. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 14–70.CrossRefGoogle Scholar
  14. Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water analysis: some revised methods for limnologists. Second impression. Freshwater Biological Association, Ambleside.Google Scholar
  15. Marcé, R., C. Feijoó, E. Navarro, J. Ordoñez, J. Gomà & J. Armengol, 2007. Interaction between wind-induced seiches and convective cooling governs algal distribution in a canyon-shaped reservoir. Freshwater Biology 52: 1336–1352.CrossRefGoogle Scholar
  16. Mašín, M., J. Jezbera, J. Nedoma, V. Straškrabová, J. Hejzlar & K. Šimek, 2003. Changes in bacterial community composition and microbial activities along the longitudinal axis of two canyon-shaped reservoirs with different inflow loading. Hydrobiologia 504: 99–113.CrossRefGoogle Scholar
  17. Moreno-Ostos, E., L. Cruz-Pizarro, A. Basanta & D. G. George, 2008. The spatial distribution of different phytoplankton functional groups in a Mediterranean reservoir. Aquatic Ecology 42: 115–128.CrossRefGoogle Scholar
  18. Murphy, J. & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  19. Nedoma, J., P. Porcalová, J. Komárková & V. Vyhnálek, 1993. Phosphorus deficiency diagnostics in the eutrophic Římov reservoir. Water Science and Technology 28: 75–84.Google Scholar
  20. Nogueira, M. G., 2000. Phytoplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia 431: 115–128.CrossRefGoogle Scholar
  21. Nogueira, M. G., R. Henry & F. E. Maricatto, 1999. Spatial and temporal heterogeneity in the Jurumirim Reservoir, Sao Paolo, Brazil. Lakes & Reservoir: Research and Management 4: 107–120.CrossRefGoogle Scholar
  22. Padisák, J., L. O. Crossetii & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.CrossRefGoogle Scholar
  23. Procházková, L., 1959. Bestimmung der Nitrate im Wasser. Zeitschrit für Analytische Chemie 167: 254–260.CrossRefGoogle Scholar
  24. Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecology 3: 141–159.Google Scholar
  25. Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111–142.CrossRefGoogle Scholar
  26. Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.CrossRefGoogle Scholar
  27. Reynolds, C. S., 1999. Phytoplankton assemblages in reservoirs. In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and Its Applications. International Institute of Ecology, Brasilian Academy of Sciences and Backuys Publishers, Sao Carlos: 439–456.Google Scholar
  28. Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  29. Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 431: 115–128.Google Scholar
  30. Scott, J. T., W. Stanley, R. D. Doyle, M. G. Forbes & B. W. Broks, 2009. River-reservoir transition zones are nitrogen fixation hot-spots regardless of ecosystem trophic state. Hydrobiologia 625: 61–68.CrossRefGoogle Scholar
  31. Šimek, K., K. Horňák, J. Jezbera, J. Nedoma, P. Znachor, J. Hejzlar & J. Seda, 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquatic Microbial Ecology 51: 249–262.CrossRefGoogle Scholar
  32. Šmilauer, P. & J. Lepš, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.Google Scholar
  33. Soballe, D. M. & R. W. Bachmann, 1984. Influence of reservoir transit on riverine algal transport and abundance. Canadian Journal of Fish and Aquatic Sciences 41: 1803–1813.Google Scholar
  34. Sommer, U., 1995. An experimental test of the intermediate disturbance hypothesis using cultures of marine phytoplankton. Limnology & Oceanography 40: 1271–1277.CrossRefGoogle Scholar
  35. Straškrabová, V., J. Hejzlar, L. Procházková & V. Vyhnálek, 1994. Eutrophication in stratified deep reservoirs. Water Science and Technology 30: 273–279.Google Scholar
  36. Thornton, K. W., B. L. Kimmel & F. F. Payne, 1990. Reservoir Limnology: Ecological Perspectives. Wiley and Sons, New York.Google Scholar
  37. Vanni, M. J., J. S. Andrews, W. H. Renwick, M. J. Gonzalez & S. J. Noble, 2006. Nutrient and light limitation of reservoir phytoplankton in relation to storm-mediated pulses in stream discharge. Archiv für Hydrobiologie 167: 421–445.CrossRefGoogle Scholar
  38. Vyhnálek, V., J. Hejzlar, J. Nedoma & J. Vrba, 1994. Importance of the river inflow for the spring development of phytoplankton bloom in a eutrophic reservoir. Freshwater Biology 33: 73–81.Google Scholar
  39. Znachor, P. & J. Nedoma, 2008. Application of the PDMPO technique in studying silica deposition in natural populations of Fragilaria crotonensis (Bacillariophyceae) at different depths in a eutrophic reservoir. Journal of Phycology 44: 518–525.CrossRefGoogle Scholar
  40. Znachor, P., E. Zapomělová, K. Řeháková, J. Nedoma & K. Šimek, 2008. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquatic Sciences 70: 77–86.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Biology Centre of AS CR, v.v.i., Institute of HydrobiologyČeské BudějoviceCzech Republic

Personalised recommendations