Advertisement

Hydrobiologia

, Volume 663, Issue 1, pp 83–99 | Cite as

Distribution of cladoceran assemblages across environmental gradients in Nova Scotia (Canada) lakes

  • Jennifer B. Korosi
  • John P. Smol
Primary research paper

Abstract

Cladocera sub-fossils have widely been recognized as useful environmental indicators. Nevertheless, investigations into the distribution and environmental controls on Cladocera are scarce in North America, hindering their use in paleolimnological studies. Here, we examine cladoceran assemblage and size structure from the surface sediments of 49 soft-water Nova Scotia (Canada) lakes to provide ecological data on this key taxonomic group, the first study of its kind for the northern Atlantic coast of North America. We found that Nova Scotia lakes contain a diverse chydorid assemblage, but were generally dominated by the smaller pelagic herbivore Eubosmina longispina. Daphnia, a larger pelagic herbivore, was relatively uncommon in these lakes. Redundancy analyses (RDA) identified maximum lake depth and dissolved organic carbon (DOC) as the environmental variables that best explained the structuring of these cladoceran assemblages. Generalized linear models were then used to better characterize the ecological associations for individual taxa. Body size of the bosminids in these lakes was significantly correlated only to total nitrogen (TN), with larger bosminids in lakes with lower TN values. Bosminid mucro length, an indication of invertebrate and fish predation pressure, was significantly related to TN, maximum lake depth, and lake surface area. The ecological information provided by this study should assist the interpretation of paleolimnological assessments of environmental change in these and other similar lakes.

Keywords

Paleolimnology Cladocera Nova Scotia lakes Assemblage Size structure 

Notes

Acknowledgements

We thank Tom Clair and Ian Dennis of Environment Canada (Atlantic Region) for providing water chemistry data, and acknowledge the staff at Kejimkujik and Cape Breton Highlands National Parks for providing logistical support for field work, as well as B. Ginn, M. Rate, C. Chan, B. Keddy, B. Keatley, J. Hawryshyn, J. Thienpont, and A. Jeziorski for field assistance. We also acknowledge A. Jeziorski, J. Sweetman, J. Kurek, and two anonymous reviewers for providing valuable feedback that improved the quality of this manuscript. This study was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant to JPS, and an NSERC Alexander Graham Bell Canada Graduate Scholarship D to JBK.

References

  1. Alexander, M. L. & S. C. Hotchkiss, 2010. Bosmina remains in lake sediments as indicators of zooplankton community composition. Journal of Paleolimnology 43: 51–59.CrossRefGoogle Scholar
  2. Amsinck, S. L., A. Strzelczak, R. Bjering, F. Landkildehus, T. L. Lauridsen, K. Christoffersen & E. Jeppesen, 2006. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes – evidence from contemporary data and sediments. Freshwater Biology 51: 2124–2142.CrossRefGoogle Scholar
  3. Birks, H. J. B., 1998. Numerical tools in palaeolimnology – progress, potentialities, and problems. Journal of Paleolimnology 20: 307–332.CrossRefGoogle Scholar
  4. Black, R. W. & N. G. Hairston Jr., 1983. Cyclomorphosis in Eubosmina longispina in a small North American pond. Hydrobiologia 102: 61–67.CrossRefGoogle Scholar
  5. Blouin, A. C., 1989. Patterns of plankton species, pH, and associated water chemistry in Nova Scotia lakes. Water, Air, and Soil Pollution 46: 343–358.Google Scholar
  6. Bos, D. G., 2001. Sedimentary cladoceran remains, a key to interpreting past changes in nutrients and trophic interactions. PhD thesis, Queen’s University, Kingston, Ontario, Canada.Google Scholar
  7. Bos, D. G. & B. F. Cumming, 2003. Sedimentary cladoceran remains and their relationships to nutrients and other limnological variables in 53 lakes from British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 60: 1177–1189.CrossRefGoogle Scholar
  8. Brahney, J., R. Routledge, D. G. Bos & M. G. Pellatt, 2010. Changes to the productivity and trophic structure of a sockeye salmon rearing lake in British Columbia. North American Journal of Fisheries Management 30: 433–444.Google Scholar
  9. Brett, M. T., 1989. Zooplankton communities and acidification processes (a review). Water, Air, and Soil Pollution 44: 387–414.CrossRefGoogle Scholar
  10. Cairns, A., 2010. Field assessments and evidence of impact of calcium decline on Daphnia (Crustacea, Anomopoda) in Canadian Shield lakes. MSc thesis, York University, Toronto, Ontario, Canada.Google Scholar
  11. Carter, J. C. H., W. D. Taylor, R. Chengalath & D. A. Scruton, 1986. Limnetic zooplankton assemblages in Atlantic Canada with special reference to acidification. Canadian Journal of Fisheries and Aquatic Sciences 43: 444–456.CrossRefGoogle Scholar
  12. Chengalath, R., 1982. A faunistic and ecological survey of littoral Cladocera of Canada. Canadian Journal of Zoology 60: 2668–2682.CrossRefGoogle Scholar
  13. Chengalath, R., 1987. The distribution of chydorid Cladocera in Canada. Hydrobiologia 145: 151–157.CrossRefGoogle Scholar
  14. Clair, T. A., J. M. Ehrman, A. J. Ouellet, G. Brun, D. Lockerbie & C.-U. Ro, 2002. Changes in freshwater acidification trends in Canada’s Atlantic provinces: 1983–1997. Water, Air, and Soil Pollution 135: 335–354.CrossRefGoogle Scholar
  15. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  16. Davidson, T. A., C. D. Sayer, M. R. Perrow, M. Bramm & E. Jeppesen, 2007. Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. Journal of Paleolimnology 38: 117–134.CrossRefGoogle Scholar
  17. Davis, D. S., S. Browne & S., 1996. The Natural History of Nova Scotia. Vol. 2: Theme Regions. Nimbus Publishing, Halifax: 304 p.Google Scholar
  18. De Bernardi, R., G. Guissani & M. Manca, 1987. Cladocera: predators and prey. Hydrobiologia 145: 225–243.CrossRefGoogle Scholar
  19. DeSellas, A. M., A. M. Paterson, J. N. Sweetman & J. P. Smol, 2008. Cladocera assemblages from the surface sediments of south-central Ontario (Canada) lakes and their relationships to measured environmental variables. Hydrobiologia 600: 105–119.CrossRefGoogle Scholar
  20. Dumont, H. J. & N. N. Smirnov, 1996. Reinstatement of the genus Paralona Sramek-Husek et al., 1962, and assessment of morphological variability in the Paralona pigra group (Anomopoda, Chydoridae). Hydrobiologia 333: 26–29.CrossRefGoogle Scholar
  21. Dzialowski, A. R., S.-H. Wang, N.-C. Lim, W. W. Spotts & D. G. Huggins, 2005. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research 27: 587–595.CrossRefGoogle Scholar
  22. Elser, J. T., M. M. Elser, N. A. MacKay & S. R. Carpenter, 1988. Zooplankton-mediated transitions between N- and P-limited algal growth. Limnology and Oceanography 33: 1–14.CrossRefGoogle Scholar
  23. Frey, D. G., 1982. The reticulated species of Chydorus (Cladocera, Chydoridae): two new species with suggestions of convergence. Hydrobiologia 93: 255–279.CrossRefGoogle Scholar
  24. Fryer, G., 1980. Acidity and species diversity in freshwater crustacean faunas. Hydrobiologia 10: 41–45.Google Scholar
  25. Gerber, A. M., B. K. Ginn, C. J. Whitfield, P. J. Dillon, B. F. Cumming & J. P. Smol, 2008. Glasgow Lake: an early-warning sentinel of lake acidification in Cape Breton Highlands National Park (Nova Scotia, Canada). Hydrobiologia 614: 299–307.CrossRefGoogle Scholar
  26. Ginn, B. K., B. F. Cumming & J. P. Smol, 2007a. Assessing pH changes since pre-industrial times in 51 low-alkalinity lakes in Nova Scotia, Canada. Canadian Journal of Fisheries and Aquatic Sciences 64: 1043–1054.CrossRefGoogle Scholar
  27. Ginn, B. K., B. F. Cumming & J. P. Smol, 2007b. Long-term lake acidification trends in high- and low-sulphate deposition regions from Nova Scotia, Canada. Hydrobiologia 586: 261–275.CrossRefGoogle Scholar
  28. Ginn, B. K., L. C. Grace, B. F. Cumming & J. P. Smol, 2008. Tracking anthropogenic- and climatic-related environmental changes in the remaining habitat lakes of the endangered Atlantic whitefish (Coregonus huntsmani) using palaeolimnological techniques. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 1217–1226.CrossRefGoogle Scholar
  29. Glew, J., 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology 1: 235–239.CrossRefGoogle Scholar
  30. Glew, J., 1989. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2: 241–243.CrossRefGoogle Scholar
  31. Glew, J. R. G., J. P. Smol & W. M. Last, 2001. Sediment core collection and extrusion. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments Vol 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands: 73–105.Google Scholar
  32. Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.CrossRefGoogle Scholar
  33. Gorham, E., J. K. Underwood, F. B. Martin & J. G. Ogden, 1986. Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature 324: 451–453.CrossRefGoogle Scholar
  34. Guthrie, J. W., N. M. Hassana, M. S. A. Salama, I. I. Fasfousa, C. A. Murimboha, J. Murimboha, C. L. Chakrabartia & D. C. Grégoireb, 2005. Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Analytica Chimica Acta 528: 205–218.CrossRefGoogle Scholar
  35. Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of long-term water quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences 53: 1–17.CrossRefGoogle Scholar
  36. Hann, B. J. & M. A. Turner, 2000. Littoral microcrustacea in Lake 302S in the experimental lakes area of Canada: acidification and recovery. Freshwater Biology 43: 133–146.CrossRefGoogle Scholar
  37. Hessen, D. O., B. A. Faafeng & T. Andersen, 1995. Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure. Canadian Journal of Fisheries and Aquatic Sciences 52: 733–742.CrossRefGoogle Scholar
  38. Howell, G. D. & P. Brooksbank, 1987. An assessment of LRTAP acidification of surface waters in Atlantic Canada. Environment Canada, Ottawa.Google Scholar
  39. Jefferies, D. S., T. A. Clair, S. Couture, P. J. Dillon, J. Dupont, W. Keller, D. K. McNicol, M. A. Turner, R. Vet & R. Weeber, 2003. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition. Ambio 32: 176–182.Google Scholar
  40. Jeffries, D. S., 1997. Canadian acid rain assessment Vol. 3: the effects on Canada’s lakes rivers, and wetlands. Environment Canada, Ottawa, ON: 220 p.Google Scholar
  41. Jeppesen, E., J. P. Jensen, S. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.CrossRefGoogle Scholar
  42. Korhola, A., 1999. Distribution patterns of Cladocera in subarctic fennoscandian lakes and their potential in environmental reconstruction. Ecogeography 22: 357–373.CrossRefGoogle Scholar
  43. Korhola, A. & M. Rautio, 2001. Cladocera and other brachiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 5–41.Google Scholar
  44. Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a Cladocera-lake depth transfer model. Journal of Paleolimnology 34: 175–190.CrossRefGoogle Scholar
  45. Korosi, J. B., A. M. Paterson, A. M. DeSellas & J. P. Smol, 2008. Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: a paleolimnological approach. Journal of Limnology 67: 22–34.Google Scholar
  46. Korosi, J. B., A. M. Paterson, A. M. DeSellas & J. P. Smol, 2010. A comparison of pre-industrial and present-day changes in Bosmina and Daphnia size structure from soft-water Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 67: 754–762.CrossRefGoogle Scholar
  47. Kurek, J., J. B. Korosi, A. Jeziorski & J. P. Smol, 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612.CrossRefGoogle Scholar
  48. Leps, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  49. Manca, M., J. Vijverberg, L. V. Polishchuk & D. A. Voronov, 2008. Daphnia body size and population dynamics under predation by invertebrate and fish predators in Lago Maggiore: an approach based on contribution analysis. Journal of Limnology 67: 15–21.Google Scholar
  50. Murdoch, A., T. A. Clair, J. K. Underwood & P. Y. Schwarz, 1987. Environmental status of several Shubenacardie River headwater lakes, Nova Scotia, Canada. GeoJournal 14: 311–317.Google Scholar
  51. Nilssen, J. P. & S. Sandoy, 1990. Recent lake acidification and cladoceran dynamics: surface sediment and core analysis from lakes in Norway, Scotland and Sweden. Philosophical Transactions of the Royal Society of London 327: 299–309.CrossRefGoogle Scholar
  52. Paterson, M., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183.CrossRefGoogle Scholar
  53. Post, D. M., T. M. Frost & J. F. Kitchell, 1995. Morphological responses by Bosmina longirostris and Eubosmina tubicen to changes in copepod predator populations during a whole-lake acidification experiment. Journal of Plankton Research 17: 1621–1632.CrossRefGoogle Scholar
  54. Rajaratnam, T., 2009. Assessment of long-term changes in water quality from Halifax region lakes (Nova Scotia, Canada) using paleolimnological techniques. MSc thesis, Queen’s University, Kingston, Ontario, Canada.Google Scholar
  55. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.Google Scholar
  56. Smol, J. P., 2008. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective, 2nd ed. Blackwell Publishing, Oxford.Google Scholar
  57. Sweetman, J. N. & J. P. Smol, 2006a. Patterns in the distribution of cladocerans (Crustacea: Brachiopoda) in lakes across a north-south transect in Alaska, USA. Hydrobiologia 553: 277–291.CrossRefGoogle Scholar
  58. Sweetman, J. N. & J. P. Smol, 2006b. A guide to the identification of cladoceran remains (Crustacea: Branchiopoda) in Alaskan lake sediments. Archiv fr Hydrobiologie (Supplement) 151: 353–394.Google Scholar
  59. Sweetman, J. N., K. M. Rühland & J. P. Smol, 2010. Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. Journal of Limnology 69: 76–87.Google Scholar
  60. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie, Poland.Google Scholar
  61. Taylor, D. J., C. R. Ishikane & R. A. Haney, 2002. The systematics of Holarctic bosminiids and a revision that reconciles molecular and morphological evolution. Limnology and Oceanoraphy 47: 1486–1495.CrossRefGoogle Scholar
  62. ter Braak, C. J. F. & P. S. Šmilauer, 2002. CANOCO 4.5 Reference Manual and CanoDraw for Windows, User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  63. Thienpont, J. R., B. K. Ginn, B. F. Cumming & J. P. Smol, 2008. Assessing environmental changes in cottage lakes from Kings County (Nova Scotia, Canada) using paleolimnological techniques. Water Quality Research Journal of Canada 43: 85–98.Google Scholar
  64. Tremel, B., S. R. Frey, N. D. Yan, K. M. Somers & T. W. Pawson, 2000. Habitat specificity of littoral Chydoridae (Crustacea, Brachiopoda, Anomopoda) in Plastic Lake, Ontario, Canada. Hydrobiologia 432: 195–205.CrossRefGoogle Scholar
  65. Underwood, J. K., J. G. Ogden, J. J. Kerekes & H. H. Vaughan, 1987. Acidification of Nova Scotia lakes. Water, Air, and Soil Pollution 32: 77–88.CrossRefGoogle Scholar
  66. Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.CrossRefGoogle Scholar
  67. Walseng, B., N. D. Yan, T. Pawson & O. Skarpaas, 2008. Acidity versus habitat structure as regulators of littoral microcrustacean assemblages. Freshwater Biology 53: 290–303.Google Scholar
  68. Watt, W. D., 1987. A summary of the impact of acid rain on Atlantic salmon (Salmo salar) in Canada. Water, Air, and Soil Pollution 35: 27–35.CrossRefGoogle Scholar
  69. Watt, W. D., C. D. Scott & W. J. White, 1983. Evidence of acidification in some Nova Scotia rivers and its impact on Atlantic salmon, Salmo salar. Canadian Journal of Fisheries and Aquatic Sciences 40: 462–473.Google Scholar
  70. Whiteside, M. C., 1970. Chydorid Cladocera: modern ecology and core studies. Ecological Monographs 40: 79–118.CrossRefGoogle Scholar
  71. Whiteside, M. C. & R. V. Harmsworth, 1967. Diversity in Chydorid (Cladocera) communities. Ecology 48: 664–667.CrossRefGoogle Scholar
  72. Williamson, C. E., D. P. Morris, M. L. Pace & O. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795–803.CrossRefGoogle Scholar
  73. Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecological Society of America 82: 1748–1760.Google Scholar
  74. Wissel, B., W. J. Boeing & C. W. Ramcharan, 2003. Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnology and Oceanography 48: 1965–1976.CrossRefGoogle Scholar
  75. Witty, L. M., 2004. Practical Guide to Identifying Freshwater Crustacean Zooplankton. Cooperative Freshwater Ecology Unit, Department of Biology, Laurentian University, Sudbury, ON, Canada.Google Scholar
  76. Yan, N. D., K. M. Somers, R. E. Girard, A. M. Paterson, C. W. Ramcharan, J. A. Rusak, R. Ingram, G. E. Morgan & J. M. Gunn, 2008. Long-term changes in crustacean zooplankton communities of Dorset, Ontario lakes: the probable interactive effects of changes in pH, TP, dissolved organic carbon, and predators. Canadian Journal of Fisheries and Aquatic Sciences 65: 862–877.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Paleoecological Environmental Assessment and Research Lab (PEARL), Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations