, Volume 663, Issue 1, pp 23–50 | Cite as

Carbon and nutrient exchange of mangrove forests with the coastal ocean

  • María Fernanda AdameEmail author
  • Catherine E. Lovelock
Review paper


Mangrove forests exchange materials with the coastal ocean through tidal inundation. In this study, we aim to provide an overview of the published data of carbon (C) and nutrient exchange of mangrove forests with the coastal ocean at different spatial scales to assess whether the exchange is correlated with environmental parameters. We collected data on C (dissolved and particulate organic C; DOC and POC) and nutrient exchange (dissolved and particulate nitrogen, N and phosphorus, P) and examined the role of latitude, temperature, precipitation, geomorphological setting, hydrology, dominant mangrove species and forest area in explaining the variability of the exchange. We identified that there are a range of methodologies used to determine material exchange of mangroves with the coastal zone, each methodology providing data on the exchange at different spatial scales. This variability of approaches has limited our understanding of the role of mangroves in the coastal zone. Regardless, we found that mangrove forests export C and nutrients to the coastal zone in the form of litter and POC. We found that precipitation is a major factor influencing the export of C in the form of litter; sites with low annual precipitation and high mean annual temperatures export more C as litter than sites with high precipitation and low temperature. Furthermore, export of POC is higher in zones with low mean annual minimum temperature. Identification of broad-scale trends in DOC and dissolved nutrients was more difficult, as the analysis was limited by scarcity of suitable studies and high variability in experimental approaches. However, tidal amplitude and the concentration of nutrients in the floodwater appears to be important in determining nutrient exchange. The strongest conclusion from our analysis is that mangrove forests are in general sources of C and nutrients in the form of litter and POC and that they are most likely to be exporting C subsidies in dry regions.


Coastal wetlands Nitrogen Phosphorus Litter Tidal exchange Precipitation 



We thank The Mexican Council for Science and Technology (CONACYT, Mexico) and School of Biological Sciences at The University of Queensland for financial and logistic support. We also like to acknowledge Dr. Mercer for editing assistance.


  1. Adaime, R. R., 1985. Production of a mangrove forest of Gamboa Nobrega. PhD Thesis. University of Sao Paulo, Sao Paulo.Google Scholar
  2. Adame, M. F., D. Neil, S. Wright & C. E. Lovelock, 2009. Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science 86: 21–30.CrossRefGoogle Scholar
  3. Adame, M. F., D. Virdis & C. E. Lovelock, 2010. Effect of rainfall and geomorphological setting in nutrient exchange in mangroves during tidal inundation. Marine and Freshwater Research 61: 1197–1206.CrossRefGoogle Scholar
  4. Alongi, D. M., 1988. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial Ecology 15: 59–79.CrossRefGoogle Scholar
  5. Alongi, D. M., 2005. Mangrove-microbe-soil relations. In Kristensen, E., J. E. Kostka & R. H. Haese (eds), Interactions Between Macro- and Microorganisms in Marine Sediments Coastal and Estuarine Studies. American Geophysical Union, Washington: 85–103.Google Scholar
  6. Alongi, D. M., 2009. The Energetics of Mangrove Forests. Springer Science, Townsville.Google Scholar
  7. Alongi, D. M., 2010. Dissolved iron supply limits early growth of estuarine mangroves. Ecology 91: 3229–3241.CrossRefPubMedGoogle Scholar
  8. Alongi, D. M., K. G. Boto & F. Tirendi, 1989. Effect of exported mangrove litter on bacterial productivity and dissolved organic carbon fluxes in adjacent tropical near shore sediments. Marine Ecology Progress Series 56: 133–144.CrossRefGoogle Scholar
  9. Alongi, D. M., L. A. Trott, M. C. Undu & F. Tirendi, 2008. Benthic microbial metabolism in seagrass meadows along a carbonate gradient in Sulawesi, Indonesia. Aquatic Microbial Ecology 51: 141–152.CrossRefGoogle Scholar
  10. Ayukai, T. & E. Wolanski, 1997. Importance of biologically mediated removal of fine sediments form the Fly River plume, Papua New Guinea. Estuarine, Coastal and Shelf Science 44: 629–639.CrossRefGoogle Scholar
  11. Ayukai, T., D. Miller, E. Wolanski & S. Spagnol, 1998. Fluxes of nutrients and dissolved and particulate organic carbon in two mangrove creeks in northeastern Australia. Mangroves and Salt Marshes 2: 223–230.CrossRefGoogle Scholar
  12. Bianchi, T. S., J. R. Pennock & R. Twilley, 1999. Biogeochemistry of Gulf of Mexico Estuaries. Wiley, New York.Google Scholar
  13. Borges, A. V., S. Djenidi, G. Lacroix, J. Théate, B. Delille & M. Frankignoulle, 2003. Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters 30(11): 1558.CrossRefGoogle Scholar
  14. Boto, K. G. & J. S. Bunt, 1981. Tidal export of particulate organic matter from a Northern Australian mangrove system. Estuarine, Coastal and Shelf Science 13: 247–255.CrossRefGoogle Scholar
  15. Boto, K. G. & J. H. Wellington, 1988. Seasonal variations in concentrations and fluxes of dissolved organic and inorganic materials in a tropical, tidally-dominated, mangrove waterway. Marine Ecology Progress Series 50: 151–160.CrossRefGoogle Scholar
  16. Bouillon, S., A. V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N. C. Duke, E. Kristensen, S. Y. Lee, C. Marchand, J. J. Middelburg, V. H. Rivera-Monroy, T. J. Smith & J. E. Twilley, 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22: 1–12.CrossRefGoogle Scholar
  17. Childers, D. L. & J. W. J. Day, 1988. A flow-through flume technique for quantifying nutrient and materials fluxes in microtidal estuaries. Estuarine, Coastal and Shelf Science 27: 483–494.CrossRefGoogle Scholar
  18. Childers, D. L., S. Davis, V. Rivera-Monroy & R. R. Twilley, 1999. Wetland-water column interactions and the biogeochemistry of estuary-watershed coupling around the Gulf of Mexico. In Bianchi, T. S, J. Pennock & R. Twilley, (eds), Biogeochemistry of Gulf of Mexico estuaries. Wiley, New York, USA: 211–236. Google Scholar
  19. Childers, D. L., J. W. Day & H. N. McKellar, 2000. Twenty more years of marsh and estuarine flux studies: revisiting Nixon (1980). In Weinstein, M. P. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Springer, Netherlands: 391–423.Google Scholar
  20. Christensen, B. O., 1978. Biomass and primary production of Rhizophora apiculata bl. in a mangrove in southern Thailand. Aquatic Botany 4: 43–52.CrossRefGoogle Scholar
  21. Cintrón, G., A. E. Lugo, D. J. Pool & G. Morris, 1978. Mangroves of arid environments in Puerto Rico and adjacent islands. Biotropica 10: 110–121.CrossRefGoogle Scholar
  22. Clark, M. W., D. Mc Conchie, D. W. Lewis & P. Saenger, 1998. Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chemical Geology 149: 147–171.CrossRefGoogle Scholar
  23. Davie, J., 1984. Structural variation, litter production and nutrient status of mangrove vegetation in Moreton Bay. In Weinstein, M. P. & D. A. Kreeger (eds), Focus on Stradbroke. New Information on North Stradbroke Island and Surroundings, 1974–1984. Boolarong Publications, Brisbane: 208–223.Google Scholar
  24. Davis, S. E., D. L. Childers, J. W. J. Day, D. Rudnick & F. Sklar, 2001a. Nutrient dynamic in vegetated and un-vegetated areas of a southern Everglades mangrove creek. Estuarine, Coastal and Shelf Science 52: 753–768.CrossRefGoogle Scholar
  25. Davis, S. E., D. L. Childers, J. W. J. Day, D. Rudnick & F. Sklar, 2001b. Wetland-water column exchanges of carbon, nitrogen and phosphorus dynamics in a southern Everglades dwarf mangrove. Estuaries 24: 610–622.CrossRefGoogle Scholar
  26. Davis, S., E., D. L. Childers, J. W. J. Day, D. T. Rudnick & F. H. Sklar, 2003. Factors affecting the concentration and flux of materials in two southern Everglades mangrove wetlands. Marine Ecology Progress Series 253: 85–96.CrossRefGoogle Scholar
  27. Day, W. D., F. Ley-Lou, R. H. Day & A. M. Navarro, 1987. The productivity and composition of mangrove forests, Laguna de Terminos, Mexico. Aquatic Botany 27: 267–284.CrossRefGoogle Scholar
  28. Deegan, L. A., J. W. Day, J. G. Gosselink, A. Yanez-Arancibia & S. C. G, P. Sanchez-Gil, 1986. Relationships among physical characteristics, vegetation distribution and fisheries yield in Gulf of Mexico estuaries. In Wolfe, D. A. (ed.), Estuarine Variability. Academic Press, San Diego: 269–276.Google Scholar
  29. Dittmar, T. & R. J. Lara, 2001. Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon River? Evidence from long-term flux measurements. Marine Ecology Progress Series 213: 67–77.CrossRefGoogle Scholar
  30. Dittmar, T., N. Hertkorn, G. Kattner & R. J. Lara, 2006. Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles 20: 1–7.CrossRefGoogle Scholar
  31. Duke, N. C., J. S. Bunt & W. T. Williams, 1981. Mangrove litter fall in north-eastern Australia: I. Annual totals by component in selected species. Australian Journal of Botany 29: 547–553.CrossRefGoogle Scholar
  32. Duke, N. C., M. C. Ball, J. C. D. N. Ellison, M. C. Ball & J. C. Ellison, 1998. Factors influencing biodiversity and distributional gradient in mangroves. Global Ecology and Biogeography Letters 7: 27–47.CrossRefGoogle Scholar
  33. Ewel, K. C., J. E. Twilley & J.-E. Ong, 1998. Different kinds of mangrove forests provide different goods and services. Global Ecology and Biogeography Letters 7: 83–94.CrossRefGoogle Scholar
  34. FAO, 2004. Status and trends in mangrove area extent worldwide. Status and trends in mangrove area extent worldwide. FAO, Rome: 287.Google Scholar
  35. Farnsworth, E. J., 1998. Issues of spatial, taxonomic and temporal scale in delineating links between mangrove diversity and ecosystem function. Global Ecology and Biogeography Letters 7: 15–25.CrossRefGoogle Scholar
  36. Feller, I., K. McKee, D. Whigham & J. O’Neill, 2002. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62: 145–175.CrossRefGoogle Scholar
  37. Feller, I. C., D. F. Whigham, K. McKee & C. E. Lovelock, 2003. Nitrogen limitation of growth and nutrient dynamics in a mangrove forest, Indian River Lagoon, Florida. Oecologia 134: 405–414.PubMedGoogle Scholar
  38. Flores-Verdugo, F., J. W. J. Day & R. Briseño-Duenas, 1987. Structure, litterfall, decomposition, and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet. Marine Ecology Progress Series 35: 83–90.CrossRefGoogle Scholar
  39. Golley, F., H. T. Odum & R. F. Wilson, 1962. The structure and metabolism of a Puerto Rican red mangrove forest in may. Ecology 43: 9–19.CrossRefGoogle Scholar
  40. Gong, W.-K. & J.-E. Ong, 1990. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuarine, Coastal and Shelf Science 31: 519–530.CrossRefGoogle Scholar
  41. Gong, W. K., J. E. Ong, C. H. Wong & G. Dhanarajan, 1984. Productivity of mangrove trees and its significance in a managed mangrove ecosystem in Malaysia. In Proceedings of the Asian symposium on mangrove environment research and development. Kuala Lumpur, Malaysia: 216–225.Google Scholar
  42. Hartnoll, R. G., S. Cannicci, W. D. Emmerson, S. Fratini, A. Macia, Y. Mgaya, F. Porri, R. K. Ruwa, J. P. Shunula, M. W. Skov & M. Vannini, 2002. Geographic trends in mangrove crab abundance in East Africa. Wetlands Ecology and Management 10: 203–213.CrossRefGoogle Scholar
  43. Heald, E. J., 1969. The production of organic detritus in a south Florida estuary. PhD. dissertation. University of Miami, Coral Gables.Google Scholar
  44. Heald, E. J., 1971. The Production of Organic Detritus in a South Florida Estuary. University of Miami, Coral Gables: 110.Google Scholar
  45. Holguin, G., P. Vazquez & Y. Bashan, 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils 33: 265–278.CrossRefGoogle Scholar
  46. Hong, P. N. & T. S. Hoan, 1993. Mangroves of Vietnam. IUCN, Bangkok.Google Scholar
  47. Hyland, S. J., A. J. Courtney & C. T. Butler, 1989. Distribution of Seagrass in the Moreton Region from Coolangatta to Noosa. Queensland, Australia.Google Scholar
  48. Jimenez, A. G. & W. A. Bennett, 2007. Metabolic responses of sand fiddler crabs, Uca pugilator, in northwest Florida to seasonal temperature change. Journal of Thermal Biology 32: 308–313.CrossRefGoogle Scholar
  49. Kangas, P. C. & A. E. Lugo, 1990. The distribution of mangroves and saltmarsh in Florida. Tropical Ecology 31: 32–39.Google Scholar
  50. Lacerda, L. D., V. Ittekkot & S. R. Patchineelam, 1995. Biogeochemistry of mangrove soil organic matter; a comparison between Rhizophora and Avicennia soils in south-eastern Brazil. Estuarine, Coastal and Shelf Science 40: 713–720.CrossRefGoogle Scholar
  51. Leach, G. J. & S. Burgin, 1985. Litter production and seasonality of mangroves in Papua New Guinea. Aquatic Botany 23: 215–224.CrossRefGoogle Scholar
  52. Lee, S. Y., 1989. Litter production and turnover of the mangrove Kandelia candel (L.) Druce in a Hong Kong tidal shrimp pond. Estuarine, Coastal and Shelf Science 29: 75–87.CrossRefGoogle Scholar
  53. Lee, S. Y., 1995. Mangrove outwelling: a review. Hydrobiologia 295: 203–212.CrossRefGoogle Scholar
  54. Lee, S. Y., 2008. Mangrove macrobenthos: assemblages, services and linkages. Journal of Sea Research 59: 16–29.CrossRefGoogle Scholar
  55. Lin, B. B. & J. Dushoff, 2004. Mangrove filtration of anthropogenic nutrients in the Rio Coco Solo Panamá. Management of Environmental Quality: An International Journal 15: 131–142.CrossRefGoogle Scholar
  56. Lovelock, C. E., 2008. Soil respiration in tropical and subtropical mangrove forests. Ecosystems 11: 342–354.CrossRefGoogle Scholar
  57. Lugo, A. E. & S. C. Snedaker, 1974. The Ecology of Mangroves. Annual Review of Ecology and systematics 5: 39–64.CrossRefGoogle Scholar
  58. Mahmood, H., O. Saberi, S. b. Japar & K. Misri, 2005. Litter flux in Kuala Selangor Nature Park mangrove forest, Malaysia. Indian Journal of Forestry 28: 233–238.Google Scholar
  59. Melville, F. & A. Pulkownik, 2006. Investigation of mangrove macroalgae as bioindicators of estuarine contamination. Marine Pollution Bulletin 52: 1260–1269.CrossRefPubMedGoogle Scholar
  60. Miller, G. J., 1979. Export and production of organic detritus from north Queensland mangroves on a summer’s day. Operculum 5: 56–60.Google Scholar
  61. Morrisey, D. A., A. Swales, S. Dittmann, M. A. Morrison, C. E. Lovelock & C. M. Beard, 2010. The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review 48: 43–160.CrossRefGoogle Scholar
  62. Newell, R. I. E., N. Marshall, A. Sasekumar & V. C. Chong, 2004. Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Marine Biology 123: 595–606.CrossRefGoogle Scholar
  63. Nordhaus, I., M. Wolff & K. Diele, 2006. Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuarine, Coastal and Shelf Science 67: 239–250.CrossRefGoogle Scholar
  64. Odum, E. P., 1968. A research challenge: evaluating the productivity of coastal and estuarine water. In Proceedings of the Second Sea Grant Conference: 63–64.Google Scholar
  65. Odum, E. P., 2000. Tidal marshes as outwelling/pulsing systems. In Weinstein, M. P. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht: 3–8.Google Scholar
  66. Odum, W. E. & E. J. Heald, 1972. Trophic analysis of an estuarine mangrove community. Bulletin Marine Science 22: 671–738.Google Scholar
  67. Odum, W. E. & E. J. Heald, 1974. Mangrove forests and aquatic productivity. In Hassler, A. D. (ed.), Coupling of Land and Water Systems: Ecological Studies. Springer, New York: 129–136.Google Scholar
  68. Ólafsson, E., S. Carlström & G. M. Ndaro, 2004. Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide inundation. Hydrobiologia 426: 57–64.CrossRefGoogle Scholar
  69. Ong, J.-E., 1993. Mangroves—a carbon source and sink. Chemosphere 27: 1097–1107.CrossRefGoogle Scholar
  70. Pool, D. J. & S. C. Snedaker, 1975. Litter production in mangrove forests of southern Florida and Puerto Rico. Proceedings of the International Symposium on Biological Management of Mangroves 2: 213–237.Google Scholar
  71. Quasim, S. Z. & R. Sen Gupta, 1981. Environmental characteristics of the Mandovi-Zuari estuarine system in Goa. Estuarine, Coastal and Shelf Science 13: 557–578.CrossRefGoogle Scholar
  72. Rajkaran, A. & J. B. Adams, 2007. Mangrove litter production and organic carbon pools in the Mngazana Estuary, South Africa. African Journal of Aquatic Science 32: 17–25.CrossRefGoogle Scholar
  73. Rezende, C. E., 1988. Organic matter and heavy metal balance in a mangrove ecosystem in Sepetiba Bay. PhD Dissertation. Federal University of Sao Carlos.Google Scholar
  74. Rezende, C., L. Lacerda, A. Ovalle & L. Silva, 2007. Dial organic carbon fluctuations in a mangrove tidal creek in Sepetiba bay, Southeast Brazil. Brazilian Journal of Biology 67: 673–680.CrossRefGoogle Scholar
  75. Rivera-Monroy, V. H., J. W. Day, R. R. Twilley, F. Vera-Herrera & C. Coronado-Molina, 1995. Flux of nitrogen and sediment in a fringe mangrove forest in Terminos Lagoon, Mexico. Estuarine, Coastal and Shelf Science 40: 139–160.CrossRefGoogle Scholar
  76. Robertson, A. I., 1986. Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forest (Rhizophora spp.) in northeastern Australia. Journal of Experimental Marine Biology and Ecology 102: 237–248.CrossRefGoogle Scholar
  77. Robertson, A. I. & D. M. Alongi, 1992. Tropical Mangrove Ecosystems. American Geophysical Union, Washington.Google Scholar
  78. Robertson, A. I. & D. M. Alongi, 1995. Role of riverine mangrove forest in organic carbon export to the tropical coastal ocean: A preliminary mass balance for the Fly Delta (Papuan New Guinea). Geo-Marine Letters 15: 134–139.CrossRefGoogle Scholar
  79. Robertson, A. I. & P. A. Daniel, 1989. The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78: 191–198.CrossRefGoogle Scholar
  80. Roberston, A. W., P. A. Daniel & P. Dixon, 1991. Mangrove forest structure and productivity in the Fly River estuary, Papua New Guinea. Marine Biology 111: 147–155.CrossRefGoogle Scholar
  81. Romigh, M. M., S. E. Davis, V. H. Rivera-Monroy & R. R. Twilley, 2006. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569: 505–516.CrossRefGoogle Scholar
  82. Saenger, P. & S. C. Snedaker, 1993. Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96: 293–299.CrossRefGoogle Scholar
  83. Sánchez-Carrillo, S., R. Sánchez-Andrés, L. C. Alatorre, D. G. Angeler & Arriola-Lizárraga Álvarez-Cobelas, 2009. Nutrient fluxes in a semi-arid microtidal mangrove wetland in the Gulf of California. Estuarine, Coastal and Shelf Science 82: 654–662.CrossRefGoogle Scholar
  84. Schaffelke, B., J. Mellors & N. C. Duke, 2005. Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities. Marine Pollution Bulletin 51: 279–296.CrossRefPubMedGoogle Scholar
  85. Silva, C. A. R., A. A. Mozeto & A. R. C. Ovalle, 1998. Distribution and fluxes as macrodetritus of phosphorus in red mangroves, Sepetiba Bay, Brazil. Mangroves and Saltmarshes 2: 37–42.CrossRefGoogle Scholar
  86. Simpson, J. H., W.-K. Gong & J.-E. Ong, 1997. The determination of the net fluxes from a mangrove estuary system. Estuaries 20: 103–109.CrossRefGoogle Scholar
  87. Stieglitz, T., P. Ridd & P. Müller, 2000. Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp. Hydrobiologia 421: 69–76.CrossRefGoogle Scholar
  88. Sutula, M. A., B. C. Perez, E. Reyes, D. L. Childers, S. Davis, J. W. J. Day, D. Rudnick & F. Sklar, 2003. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA). Estuarine, Coastal and Shelf Science 57: 757–781.CrossRefGoogle Scholar
  89. Taylor, D. I., 1992. The influence of upwelling and short-term changes in concentrations of nutrients in the water column on fluxes across the surface of a saltmarsh. Estuaries 15: 68–74.CrossRefGoogle Scholar
  90. Thom, B. G., 1982. Mangrove ecology: a geomorphological perspective. In Clough, In B. F. (ed.), Mangrove Ecosystems in Australia, Structure, Function and Management. Australian National University Press, Canberra: 3–17.Google Scholar
  91. Twilley, R. R., 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. Estuarine, Coastal and Shelf Science 20: 543–557.CrossRefGoogle Scholar
  92. Twilley, R. R., A. E. Lugo & C. Patterson-Zuca, 1986. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67: 670–683.CrossRefGoogle Scholar
  93. Twilley, R. R., R. H. Chen & T. Hargis, 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air and Soil Pollution 64: 265–288.CrossRefGoogle Scholar
  94. Twilley, R. R., M. Pozo, V. H. Garcia, V. H. Rivera-Monroy & R. Zambrano, 1997. Litter dynamics in riverine mangroves in the Guayas River estuary, Ecuador. Oecologia 111: 109–122.CrossRefGoogle Scholar
  95. Valiela, I. & M. L. Cole, 2002. Comparative evidence that salt marshes and mangroves may protect seagrass meadow from land-derived nitrogen loads. Ecosystems 5: 92–102.CrossRefGoogle Scholar
  96. Wafar, S., G. Untawale & M. Wafar, 1997. Litter fall and energy flux in a mangrove ecosystem. Estuarine, Coastal and Shelf Science 44: 111–124.CrossRefGoogle Scholar
  97. Wattayakorn, G., E. Wolanski & K. Björn, 1990. Mixing, trapping and outwelling in the Klong Ngao Mangrove Swamp, Thailand. Estuarine, Coastal and Shelf Science 31: 667–688.CrossRefGoogle Scholar
  98. Wattayakorn, G., P. Prapong, D. Noichareon, 2001. Biogeochemical budgets and processes in Bandon Bay, Suratthani, Thailand. Journal of Sea Research 46: 133-142.CrossRefGoogle Scholar
  99. Wolanski, E., Y. Mazda & P. Ridd, 1992. Mangrove hydrodynamics. In Robertson, A. I. & D. M. Alongi (eds), Coastal and Estuarine Studies. American Geophysical Union, Washington: 329.Google Scholar
  100. Wolanksi, E., S. Spagnol & E. B. Lim, 1997. The importance of mangrove flocs in sheltering seagrass in turbid coastal waters. Mangroves and Saltmarshes 1: 187–191.CrossRefGoogle Scholar
  101. Woodroffe, C. D., 1982. Litter production and decomposition in the New Zealand mangrove, Avicennia marina var. resinifera. New Zealand Journal of Marine and Freshwater Research 16: 179–188.CrossRefGoogle Scholar
  102. Woodroffe, C. D., 1985a. Studies of a mangrove basin Tuff Crater, New Zealand: III. The flux of organic and inorganic particular matter. Estuarine, Coastal and Shelf Science 20: 447–461.CrossRefGoogle Scholar
  103. Woodroffe, C. D., 1985b. Studies of a mangrove basin, Tuff Crater, New Zealand: II. Comparison of volumetric and velocity-area methods of estimating tidal flux. Estuarine, Coastal and Shelf Science 20: 431–445.CrossRefGoogle Scholar
  104. Woodroffe, C. D., 1992. Mangrove sediments and geomorphology. In Robertson, A. I. & D. M. Alongi (eds), Coastal and Estuarine Studies. American Geophysical Union, Washington: 329. Google Scholar
  105. Woodroffe, C. D., K. N. Bardsley, P. J. Ward & J. R. Hanley, 1988. Production of mangrove litter in a macrotidal embayment, Darwin Harbour, N.T., Australia. Estuarine, Coastal and Shelf Science 26: 581–598.CrossRefGoogle Scholar
  106. Wösten, J. H. M., P. Willigen, N. H. Tri, T. V. Lien & S. V. Smith, 2003. Nutrient dynamics in mangrove areas of the Red River estuary in Vietnam. Estuarine, Coastal and Shelf Science 57: 65–72.CrossRefGoogle Scholar
  107. Young, M., M. E. Gonneea, J. Herrera-Silveira & A. Paytan, 2005. Export of dissolved and particulate carbon and nitrogen from a mangrove-dominated lagoon, Yucatan Peninsula, Mexico. International Journal of Ecology and Environmental Sciences 31: 189–202.Google Scholar
  108. Zaldívar Jiménez, A., J. Silveira Herrera, C. Coronado-Molina & D. Alonzo Parra, 2004. Estructura y productividad de los manglares en la reserva de la biosfera Ría Celestún, Yucatán, México. Maderas y Bosques Número especial 2: 23–25.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • María Fernanda Adame
    • 1
    • 2
    Email author
  • Catherine E. Lovelock
    • 1
  1. 1.School of Biological SciencesThe University of QueenslandSt LuciaAustralia
  2. 2.Centro de Investigación y de Estudios Avanzados (CINVESTAV) del I.P.N., U. MéridaMéridaMéxico

Personalised recommendations