Abstract
Daphnia swimming behaviour is controlled by a variety of external factors, including light, presence of food and predators. Temperature represents a key driver in the dynamics of Daphnia populations, as well as on their motion. In this study, we have investigated the behavioural adaptations of adult Daphnia pulicaria to two different temperatures, representative of the mean winter (3°C) and summer (22°C) temperatures to which these organisms are exposed to in the real environment. Video observations were conducted both in the presence and in the absence of light to investigate possible day/night modifications in the motion strategy. Analyses of mean speed, velocity power spectral density and trajectory fractal dimension point out specific adaptations that allow D. pulicaria to successfully adjust to the changing conditions of the environment. Independently of the light conditions, in cold waters D. pulicaria swim almost vertically with defined motional frequencies, likely to increase the encounter with food items diluted in the fluid. A similar behaviour is displayed by the animals at summertime temperatures in the presence of light; however, in this case the vertical swimming is coupled with the absence of peaks in the power spectra and might be exploited to avoid predators. In contrast, at 22°C in dark conditions D. pulicaria move horizontally with lateral motions to take advantage of possible patches of phytoplankton. This information sheds new light into the complex and dynamic adaptations of D. pulicaria in response to external stimuli.
Similar content being viewed by others
References
Baillieul, M. & R. Blust, 1999. Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquatic Toxicology 44: 245–254.
Beklioglu, M., A. G. Gozen, F. Yildirim, P. Zorlu & S. Onde, 2008. Impact of food concentration on diel vertical migration behaviour of Daphnia pulex under fish predation risk. Hydrobiologia 614: 321–327.
Bendat, S. J. & A. G. Piersol, 1966. Measurements and Analysis of Random Data. John Wiley & Sons, Inc., New York.
Brewer, M. C. & J. N. Coughlin, 1996. Virtual plankton: a novel approach to the investigation of aquatic predator-prey interactions. In Lenz, P. H., D. K. Hartline, J. E. Purcell & D. L. Macmillan (eds), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach, Amsterdam: 425–434.
Buczkowski, S., S. Kyriacos, F. Nekka & L. Cartilier, 1998. The modified box-counting method: analysis of some characteristic parameters. Pattern Recognition 31: 411–418.
Burns, C. W. & F. H. Rigler, 1967. Comparison of filtering rates of Daphnia rosea in lake water and in suspensions of yeast. Limnology and Oceanography 12: 492–502.
Castiglione, P., M. Cencini, A. Vulpiani & E. Zambianchi, 1999. Transport in finite size systems: an exit time approach. Chaos 9: 871–879.
Curl, H. J., J. T. Hardy & R. Ellermeier, 1972. Spectral absorption of solar radiation in alpine snowfields. Ecology Letters 53: 1189–1194.
Dawidowicz, P. & C. J. Loose, 1992. Metabolic costs during predator induced diel vertical migration of Daphnia. Limnology and Oceanography 37: 1589–1595.
de Bernardi, R. & R. H. Peters, 1987. Why Daphnia? In Peters, R. H. & R. de Bernardi (eds), Daphnia: Memorie dell’Istituto Italiano di Idrobiologia Dott. Marco de Marchi, Vol. 45. Consiglio Nazionale delle Ricerche, Verbania-Pallanza: 353–366.
Dodson, S. & C. Ramcharan, 1991. Size-specific swimming behavior of Daphnia pulex. Journal of Plankton Research 13: 1367–1379.
Dodson, S. I., T. Hanazato & P. R. Gorski, 1995. Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environmental Toxicology and Chemistry 14: 43–50.
Dodson, S. I., S. Ryan, R. Tollrien & W. Lampert, 1997. Individual swimming behaviour of Daphnia: effects of food, light and container size in four clones. Journal of Plankton Research 19: 1537–1552.
Garnier, J. & S. Mourelatos, 1991. Contribution of grazing in phytoplankton overall losses in a shallow French lake. Freshwater Biology 25: 515–523.
Gerritsen, J., 1982. Behavioral response of Daphnia to rate of temperature change: possible enhancement of vertical migration. Limnology and Oceanography 27: 251–254.
Gliwicz, Z. M. & P. Maszczyk, 2007. Daphnia growth is hindered by chemical information on predation risk at high but not at low food levels. Oecologia 150: 706–715.
Gorski, P. R. & S. I. Dodson, 1996. Free-swimming Daphnia pulex can avoid following Stokes’ law. Limnology and Oceanography 41: 1815–1821.
Heugens, E. H. W., T. Jager, R. Creyghton, M. H. S. Kraak, A. J. Hendriks, N. M. Van Straalen & W. Admiraal, 2003. Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environmental Science & Technology 37: 2145–2151.
Hwang, J.-S. & J. R. Strickler, 2001. Can copepods differentiate prey from predator hydromechanically? Zoological Studies 40: 1–6.
Johnson, T. B., 1995. Long term dynamics of the zooplanktivorous fish community in Lake Mendota, WI. PhD Thesis, University of Madison-Wisconsin, Madison, USA.
Kalff, J., 2002. Limnology: Inland Water Ecosystems. Prentice Hall, Upper Saddle River, NJ.
Kerfoot, W. C., 1985. Adaptive value of vertical migration: comments on the predation hypothesis and some alternatives. In Rankin, M. A. (ed.), Migration: Mechanisms, Adaptive Significance, Vol. 27. University of Texas, Port Aransas: 91–113.
Kibby, H. V., 1971. Effect of temperature on the feeding behavior of Daphnia rosea. Limnology and Oceanography 16: 580–581.
Loiterton, B., M. Sundbom & T. Vrede, 2004. Separating physical and physiological effects of temperature on zooplankton feeding rate. Aquatic Sciences 66: 123–129.
MacArthur, J. W. & W. H. T. Baittie, 1929. Metabolic rates and their relation to longevity in Daphnia magna. Journal of Experimental Zoology 53: 243–268.
Mandelbrot, B. B., 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.
McMahon, J. W., 1965. Some physical factors influencing the feeding behavior of Daphnia magna Straus. Canadian Journal of Fisheries and Aquatic Sciences 43: 603–611.
O’Keefe, T. C., M. C. Brewer & S. I. Dodson, 1998. Swimming behavior of Daphnia: its role in determining predation risk. Journal of Plankton Research 20: 973–984.
Papoulis, A., 1965. Probability, Random Variables, and Stochastic Processes. McGraw Hill, New York.
Reichwaldt, E. S., 2008. Food quality influences habitat selection in Daphnia. Freshwater Biology 53: 872–883.
Reichwaldt, E. S., I. D. Wolf & H. Stibor, 2005. Effects of a fluctuating temperature regime experienced by Daphnia during diel vertical migration on Daphnia life history parameters. Hydrobiologia 543: 199–205.
Ringelberg, J., 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews 74: 397–423.
Ryan, S. & S. I. Dodson, 1998. Seasonal analysis of Daphnia pulicaria swimming behavior. Hydrobiologia 384: 111–118.
Schalau, K., K. Rinke, D. Straile & F. Peeters, 2008. Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study. Oecologia 157: 531–543.
Seidl, M. D., R. Pirow & R. J. Paul, 2005. Acclimation of the microcrustacean Daphnia magna to warm temperatures is dependent on haemoglobin expression. Journal of Thermal Biology 30: 532–544.
Seiwell, H. R., 1930. Influence of temperature on the rate of beating of the hearth of a Cladoceran. Journal of Experimental Zoology 57: 331–346.
Seuront, L., M. C. Brewer & J. R. Strickler, 2004. Quantifying zooplankton swimming behavior: the question of scale. In Seuront, L. & P. G. Strutton (eds), Handbook of Scaling Methods in Aquatic Ecology – Measurements, Analysis, Simulation. CRC Press, Boca Raton, FL: 333–359.
Smith, F. E. & E. R. Baylor, 1953. Color responses in the Cladocera and their ecological significance. The American Naturalist 87: 49–55.
Smith, K. C. & E. R. Macagno, 1990. UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. Journal of Comparative Physiology A 166: 597–606.
Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W. H. Freeman and Company, New York.
Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.
Szulkin, M., P. Dawidowicz & S. I. Dodson, 2006. Behavioural uniformity as a response to cues of predation risk. Animal Behaviour 71: 1013–1019.
Threlkeld, S. T., 1987. Daphnia life history strategies and resource allocation patterns. In Peters, R. H. & R. de Bernardi (eds), Daphnia. Memorie dell’Istituto Italiano di Idrobiologia Dott. Marco de Marchi, Vol. 45. Consiglio Nazionale delle Ricerche, Verbania-Pallanza: 353–366.
Tiselius, P., B. Hansen, P. Jonsson, T. Kiørboe, T. G. Nielsen, S. Piontkovski & E. Saiz, 1995. Can we use laboratory-reared copepods for experiments? A comparison of feeding behaviour and reproduction between a field and a laboratory population of Acartia tonsa. ICES Journal of Marine Science 52: 369–376.
Tukey, J. W., 1977. Exploratory data analysis. Addison-Wesley, Reading, MA.
Uttieri, M., M. G. Mazzocchi, A. Nihongi, M. Ribera d’Alcalà, J. R. Strickler & E. Zambianchi, 2004. Lagrangian description of zooplankton swimming trajectories. Journal of Plankton Research 26: 99–105.
Uttieri, M., E. Zambianchi, J. R. Strickler & M. G. Mazzocchi, 2005. Fractal characterization of three-dimensional zooplankton swimming trajectories. Ecological Modelling 185: 51–63.
Vijverberg, J., 1980. Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwater Biology 10: 317–340.
Vogel, S., 1994. Life in Moving Fluids – The Physical Biology of Flow. Princeton University Press, Princeton.
Weber, A. & A. Van Noordwijk, 2002. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals. Journal of Plankton Research 24: 1335–1348.
Welch, P. D., 1970. The use of Fast Fourier Transform for estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15: 70–73.
Acknowledgments
We would like to recognize the generous donation of the VidAna tracking software by Dr. Michael Hofmann (University of Bonn). M.U. is sincerely grateful to E. Zambianchi and P. Licandro for constructive exchanges.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling editor: P. Spaak
Rights and permissions
About this article
Cite this article
Ziarek, J.J., Nihongi, A., Nagai, T. et al. Seasonal adaptations of Daphnia pulicaria swimming behaviour: the effect of water temperature. Hydrobiologia 661, 317–327 (2011). https://doi.org/10.1007/s10750-010-0540-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-010-0540-0