Skip to main content

Advertisement

Log in

Otolith trace element and stable isotopic compositions differentiate fishes from the Middle Mississippi River, its tributaries, and floodplain lakes

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Naturally occurring stable isotope and trace elemental markers in otoliths have emerged as powerful tools for determining natal origins and environmental history of fishes in a variety of marine and freshwater environments. However, few studies have examined the applicability of this technique in large river-floodplain ecosystems. This study evaluated otolith microchemistry and stable isotopic composition as tools for determining environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes in Illinois and Missouri, USA. Fishes were collected from 14 sites and water samples obtained from 16 sites during summer and fall 2006 and spring 2007. Otolith and water samples were analyzed for stable oxygen isotopic composition (δ18O) and concentrations of a suite of trace elements; otoliths were also analyzed for carbon isotopic composition (δ13C). Tributaries, floodplain lakes, and the Mississippi and Lower Missouri Rivers possessed distinct isotopic and elemental signatures that were reflected in fish otoliths. Fish from tributaries on the Missouri and Illinois sides of the middle Mississippi River could also be distinguished from one another by their elemental and isotopic fingerprints. Linear discriminant function analysis of otolith chemical signatures indicated that fish could be classified back to their environment of capture (Mississippi River, floodplain lake, tributary on the Illinois or Missouri side of the Mississippi River, or lower Missouri River) with 71–100% accuracy. This study demonstrates the potential applicability of otolith microchemistry and stable isotope analyses to determine natal origins and describe environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes. The ability to reconstruct environmental history of individual fish using naturally occurring isotopic markers in otoliths may also facilitate efforts to quantify nutrient and energy subsidies to the Mississippi River provided by fishes that emigrate from floodplain lakes or tributaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bayley, P. B. & H. W. Li, 1992. Riverine fishes. In Calow, P. & G. E. Petts (eds), The Rivers Handbook, Vol. 1. Blackwell Scientific Publications, Oxford: 251–281.

    Google Scholar 

  • Bickford, N. & R. Hannigan, 2005. Stock identification of walleye via otolith chemistry in the Eleven Point River, Arkansas. North American Journal of Fisheries Management 25: 1542–1549.

    Article  Google Scholar 

  • Brazner, J. C., S. E. Campana & D. K. Tanner, 2004. Habitat fingerprints for Lake Superior coastal wetlands derived from elemental analysis of yellow perch otoliths. Transactions of the American Fisheries Society 133: 692–704.

    Article  Google Scholar 

  • Bronte, C. R., R. J. Hesselberg, J. A. Shoesmith & M. H. Hoff, 1996. Discrimination among spawning concentrations of Lake Superior lake herring based on trace element profiles in sagittae. Transactions of the American Fisheries Society 125: 852–859.

    Article  Google Scholar 

  • Brown, D. J. & T. G. Coon, 1994. Abundance and assemblage structure of fish larvae in the lower Missouri River and its tributaries. Transactions of the American Fisheries Society 123: 718–732.

    Article  Google Scholar 

  • Campana, S. E. & S. R. Thorrold, 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58: 30–38.

    Article  Google Scholar 

  • Campana, S. E., J. A. Gagne & J. W. McLaren, 1995. Elemental fingerprinting of fish otoliths using ID-ICPMS. Marine Ecology Progress Series 122: 115–120.

    Article  Google Scholar 

  • Clarke, A. D., K. H. Telmer & J. M. Shrimpton, 2007. Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus). Ecology of Freshwater Fish 16: 354–361.

    Article  Google Scholar 

  • Coplen, T. B. & C. Kendall, 2000. Stable hydrogen and oxygen isotope ratios for selected sites of the U. S. Geological Survey’s NASQAN and BENCHMARK surface water networks. U. S. Geological Survey open-file report 00-160, Reston, VA: 424 pp.

  • Crook, D. A. & B. M. Gillanders, 2006. Use of otolith chemical signatures to estimate carp recruitment sources in the Mid-Murray River, Australia. River Research and Applications 22: 871–879.

    Article  Google Scholar 

  • Csoboth, L. A. & J. E. Garvey, 2008. Lateral exchange of larval fish between a restored backwater and a large river in the East-Central USA. Transactions of the American Fisheries Society 137: 33–44.

    Article  Google Scholar 

  • DeGrandchamp, K. L., J. E. Garvey & R. E. Colombo, 2008. Movement and habitat selection by invasive Asian carps in a large river. Transactions of the American Fisheries Society 137: 45–56.

    Article  Google Scholar 

  • Dettmers, J. M., D. H. Wahl, D. A. Soluk & S. Gutreuter, 2001. Life in the fast lane: fish and food web structure in the main channel of large rivers. Journal of the North American Benthological Society 20: 255–265.

    Article  Google Scholar 

  • Dufour, E., W. P. Patterson, T. O. Hook & E. S. Rutherford, 2005. Early life history of Lake Michigan alewives (Alosa pseudoharengus) inferred from intra-otolith stable isotope ratios. Canadian Journal of Fisheries and Aquatic Sciences 62: 2362–2370.

    Article  CAS  Google Scholar 

  • Feyrer, F., J. Hobbs, M. Baerwald, T. Sommer, Q. Yin, K. Clark, B. May & W. Bennett, 2007. Otolith microchemistry provides information complementary to microsatellite DNA for a migratory fish. Transactions of the American Fisheries Society 136: 469–476.

    Article  CAS  Google Scholar 

  • Frederickson, G. C. & R. E. Criss, 1999. Isotope hydrology and residence times of the unimpounded Meramec River Basin, Missouri. Chemical Geology 157: 303–317.

    Article  CAS  Google Scholar 

  • Fry, B. & Y. C. Allen, 2003. Stable isotopes in zebra mussels as bioindicators of river-watershed linkages. River Research and Applications 19: 683–696.

    Article  Google Scholar 

  • Gao, Y. W., S. H. Joner & G. G. Bargmann, 2001. Stable isotopic composition of otoliths in identification of spawning stocks of Pacific herring (Clupea pallasi) in Puget Sound. Canadian Journal of Fisheries and Aquatic Sciences 58: 2113–2120.

    Article  Google Scholar 

  • Gillanders, B. M. & M. J. Kingsford, 2000. Elemental fingerprints of otoliths of fish may distinguish estuarine ‘nursery’ habitats. Marine Ecology Progress Series 201: 273–286.

    Article  CAS  Google Scholar 

  • Gozlan, R. E., S. Mastrorillo, F. Dauba, J. Tourenq & G. H. Copp, 1998. Multi-scale analysis of habitat use during late summer for 0+ fishes in the River Garonne (France). Aquatic Sciences 60: 99–117.

    Article  Google Scholar 

  • Grift, R. E., A. D. Buijse, W. L. T. Van Densen, M. A. M. Machiels, J. Dranenbarg, J. G. P. Klein Breteler & J. J. G. M. Backx, 2003. Suitable habitats for 0-group fish in rehabilitated floodplains along the lower River Rhine. River Research and Applications 19: 353–374.

    Article  Google Scholar 

  • Hamer, P. A. & G. P. Jenkins, 2007. Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology 71: 1035–1055.

    Article  CAS  Google Scholar 

  • Hoefs, J., 2004. Stable Isotope Geochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Holland, L. E., 1986. Distribution of early life history stages of fishes in selected pools of the upper Mississippi River. Hydrobiologia 136: 121–130.

    Article  Google Scholar 

  • Humphries, P., A. J. King & J. D. Koehn, 1999. Fish, flows and floodplains: links between freshwater fish and their environment in the Murray-Darling River system, Australia. Environmental Biology of Fishes 56: 129–151.

    Article  Google Scholar 

  • Kalish, J. M., 1991. Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Marine Biology 110: 37–47.

    Article  Google Scholar 

  • Keckeis, H. & F. Scheimer, 2002. Understanding conservation issues of the Danube River. In Fuiman, L. A. & R. G. Werner (eds), Fishery Science: The Unique Contribution of Early Life Stages. Blackwell Publishing, Oxford: 272–288.

    Google Scholar 

  • Kendall, C. & E. A. Caldwell, 1998. Fundamentals of isotope geochemistry. In Kendall, C. & J. J. McDonnell (eds), Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam: 51–86.

    Google Scholar 

  • Kennedy, B. P., A. Klaue, J. D. Blum, C. L. Folt & K. H. Nislow, 2002. Reconstructing the lives of fish using Sr isotopes in otoliths. Canadian Journal of Fisheries and Aquatic Sciences 59: 925–929.

    Article  Google Scholar 

  • Kiffney, P. M., C. M. Greene, J. E. Hall & J. R. Davies, 2006. Tributary streams create spatial discontinuities in habitat, biological productivity, and diversity in mainstem rivers. Canadian Journal of Fisheries and Aquatic Sciences 63: 2518–2530.

    Article  Google Scholar 

  • Knights, B. C., B. L. Johnson & M. B. Sandheinrich, 1995. Responses of bluegills and black crappies to dissolved oxygen, temperature and current in backwater lakes of the upper Mississippi River during winter. North American Journal of Fisheries Management 15: 390–399.

    Article  Google Scholar 

  • Ludsin, S. A., B. J. Fryer & J. E. Gagnon, 2006. Comparison of solution-based versus laser ablation inductively coupled plasma mass spectrometry for analysis of larval fish otolith microelemental composition. Transactions of the American Fisheries Society 13: 218–231.

    Article  Google Scholar 

  • Munro, A. R., T. E. McMahon & J. R. Ruzycki, 2005. Natural chemical markers identify source and date of an exotic species: lake trout (Salvelinus namaycush) in Yellowstone Lake. Canadian Journal of Fisheries and Aquatic Sciences 62: 79–87.

    Article  CAS  Google Scholar 

  • Nunn, A. D., J. P. Harvey & I. G. Cowx, 2007a. Benefits to 0+ fishes of connecting man-made waterbodies to the lower River Trent, England. River Research and Applications 23: 361–376.

    Article  Google Scholar 

  • Nunn, A. D., J. P. Harvey & I. G. Cowx, 2007b. The food and feeding relationships of larval and 0+ year juvenile fishes in lowland rivers and connected waterbodies. I. Ontogenetic shifts and interspecific diet similarity. Journal of Fish Biology 70: 726–742.

    Article  Google Scholar 

  • Patterson, W. P., G. R. Smith & K. C. Lohmann, 1993. Continental paleothermotry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In Swart, P., K. Lohmann, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. Geophysical Monograph 78. American Geophysical Union, Washington: 191–202.

    Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Quay, P. D., S. R. Emerson, B. M. Quay & A. H. Devol, 1986. The carbon cycle for Lake Washington—a stable isotope study. Limnology and Oceanography 31: 596–611.

    Article  CAS  Google Scholar 

  • Raibley, P. T., K. S. Irons, T. M. O’Hara, K. D. Bloodgett & R. E. Sparks, 1997. Winter habitats used by largemouth bass in the Illinois River, a large river-floodplain ecosystem. North American Journal of Fisheries Management 17: 401–412.

    Article  Google Scholar 

  • Robinson, A. T., R. W. Clarkson & R. E. Forrest, 1998. Dispersal of larval fishes in a regulated river tributary. Transactions of the American Fisheries Society 127: 772–786.

    Article  Google Scholar 

  • Schaffler, J. J. & D. L. Winkelman, 2008. Temporal and spatial variability in otolith trace-element signatures of juvenile striped bass from spawning locations in Lake Texoma, Oklahoma, Texas. Transactions of the American Fisheries Society 137: 818–829.

    Article  CAS  Google Scholar 

  • Schiemer, F., 2000. Fish as indicators for the assessment of the ecological integrity of large rivers. Hydrobiologia 423: 271–278.

    Article  Google Scholar 

  • Schiemer, F., H. Keckeis, W. Reckendorfer & G. Winkler, 2001. The ‘inshore retentivity concept’ and its significance for large rivers. Archiv fur Hydrobiologie Supplement 135: 509–516.

    Google Scholar 

  • Shiller, A. M., 2003. Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations. Environmental Science and Technology 37: 3953–3957.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, C. T., P. K. Weber, J. J. Cech Jr., B. L. Ingram, M. E. Conrad, M. V. Machavaram, A. R. Pogodina & R. L. Franklin, 2006. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63: 79–89.

    Article  CAS  Google Scholar 

  • Swearer, S. E., G. E. Forrester, M. A. Steele, A. J. Brooks & D. W. Lea, 2003. Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuarine, Coastal and Shelf Science 56: 1111–1123.

    Article  CAS  Google Scholar 

  • Thorrold, S. M., C. M. Jones, P. K. Swart & T. E. Targett, 1998. Accurate classification of juvenile weakfish Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths. Marine Ecology Progress Series 173: 253–265.

    Article  CAS  Google Scholar 

  • Vokoun, J. C. & C. F. Rabeni, 2005. Variation in an annual movement cycle within and between two Missouri watersheds. North American Journal of Fisheries Management 25: 563–572.

    Article  Google Scholar 

  • Wells, B. K., B. E. Rieman, J. L. Clayton, D. L. Horan & C. M. Jones, 2003. Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’ Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Transactions of the American Fisheries Society 132: 409–424.

    Article  CAS  Google Scholar 

  • Whitledge, G. W., 2009. Otolith microchemistry and isotopic composition as potential indicators of fish movement between the Illinois River drainage and Lake Michigan. Journal of Great Lakes Research 35: 100–105.

    Article  Google Scholar 

  • Whitledge, G. W., B. M. Johnson & P. J. Martinez, 2006. Stable hydrogen isotopic composition of fishes reflects that of their environment. Canadian Journal of Fisheries and Aquatic Sciences 63: 1746–1751.

    Article  CAS  Google Scholar 

  • Whitledge, G. W., B. M. Johnson, P. J. Martinez & A. M. Martinez, 2007. Sources of non-native centrarchids in the upper Colorado River revealed by stable isotope and microchemical analyses of otoliths. Transactions of the American Fisheries Society 136: 1263–1275.

    Article  Google Scholar 

  • Winston, W. E. & R. E. Criss, 2003. Oxygen isotope and geochemical variations in the Missouri River. Environmental Geology 43: 546–556.

    CAS  Google Scholar 

  • Winter, J., 1996. Advances in underwater biotelemetry. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda: 555–590.

    Google Scholar 

  • Zeigler, J. M. & G. W. Whitledge, 2010. Assessment of otolith chemistry for identifying source environment of fishes in the lower Illinois River, Illinois. Hydrobiologia 638: 109–119.

    Article  CAS  Google Scholar 

  • Zigler, S. J., M. R. Dewey, B. C. Knights, A. L. Runstrom & M. T. Steingraeber, 2003. Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries. North American Journal of Fisheries Management 23: 189–205.

    Article  Google Scholar 

  • Zimmerman, C. E. & G. H. Reeves, 2002. Identification of steelhead and resident rainbow trout progeny in the Deschutes River, Oregon, revealed with otolith microchemistry. Transactions of the American Fisheries Society 131: 986–993.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by a faculty seed grant from the Office of Research Development and Administration, Southern Illinois University, Carbondale. Stable isotope analyses of water and otolith samples were performed by the Alaska Stable Isotope Facility, University of Alaska-Fairbanks. Trace element analyses of water samples were conducted by the Center for Trace Analysis, University of Southern Mississippi. We thank Ian Ridley and Alan Koenig (U. S. Geological Survey Mineral Resources Team, Denver, Colorado) for access to the LA-ICPMS laboratory and for providing analytical support. We also thank Maureen Doran for access to the laminar flow hood and we thank Nick Wahl for assisting with collecting fishes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory W. Whitledge.

Additional information

Handling editor: R. Bailey

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeigler, J.M., Whitledge, G.W. Otolith trace element and stable isotopic compositions differentiate fishes from the Middle Mississippi River, its tributaries, and floodplain lakes. Hydrobiologia 661, 289–302 (2011). https://doi.org/10.1007/s10750-010-0538-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0538-7

Keywords

Navigation