Skip to main content
Log in

Rotifers: excellent subjects for the study of macro- and microevolutionary change

  • ROTIFERA XII
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Rotifers, both as individuals and as a phylogenetic group, are particularly worthwhile subjects for the study of evolution. Over the past decade molecular and experimental work on rotifers has facilitated major progress in three lines of evolutionary research. First, we continue to reveal the phylogentic relationships within the taxon Rotifera and its placement within the tree of life. Second, we have gained a better understanding of how macroevolutionary transitions occur and how evolutionary strategies can be maintained over millions of years. In the case of rotifers, we are challenged to explain the evolution of obligate asexuality (in the bdelloids) as mode of reproduction and how speciation occurs in the absence of sex. Recent research with bdelloid rotifers has identified novel mechanisms such as horizontal gene transfer and resistance to radiation as factors potentially affecting macroevolutionary change. Third, we are finding that microevolutionary change can be sufficiently rapid to interact with ecological dynamics. Rotifers can be easily cultured, reproduce quickly, and occur at high levels of clonal, genetic diversity in nature. These features make them excellent eukaryotic model systems for the study of eco-evolutionary dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlrichs, W. H., 1995, Zur Ultrastruktur und Phylogenie von Seison nebaliae Grube, 1859, und Seison annulatus Claus, 1876—Hypothesen zu phylogenetischen Verwandtschaftsverhältnissen innerhalb der Bilateria. Cuvillier, Göttingen: 310 pp.

  • Arkhipova, I. & M. Meselson, 2000. Transposable elements in sexual and ancient asexual taxa. Proceedings of the National Academy of Sciences of the United States of America 97: 14473–14477.

    Article  CAS  PubMed  Google Scholar 

  • Arkhipova, I. & M. Meselson, 2005. Deleterious transposable elements and the extinction of asexuals. Bioessays 27: 76–85.

    Article  CAS  PubMed  Google Scholar 

  • Barraclough, T. G., C. W. Birky & A. Burt, 2003. Diversification in sexual and asexual organisms. Evolution 57: 2166–2172.

    PubMed  Google Scholar 

  • Barraclough, T. G., D. Fontaneto, C. Ricci & E. A. Herniou, 2007. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Molecular Biology and Evolution 24: 1952–1962.

    Article  CAS  PubMed  Google Scholar 

  • Becks, L., S. P. Ellner, L. E. Jones & N. G. Hairston, 2010. Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecology Letters 13: 989–997.

    PubMed  Google Scholar 

  • Bell, G., 1982. The Masterpiece of Nature. University of California Press, Berkeley.

    Google Scholar 

  • Bennett, W. N. & M. E. Boraas, 1989. A demographic profile of the fastest growing metazoan: a strain of Brachionus calyciflorus (Rotifera). Oikos 55: 365–369.

    Article  Google Scholar 

  • Birky, C. W., 2004. Bdelloid rotifers revisited. Proceedings of the National Academy of Sciences of the United States of America 101: 2651–2652.

    Article  CAS  PubMed  Google Scholar 

  • Carmona, M. J., N. Dimas-Flores, E. M. Garcia-Roger & M. Serra, 2009. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology 22: 1975–1983.

    Article  CAS  PubMed  Google Scholar 

  • Derry, A. M., P. D. N. Hebert & E. E. Prepas, 2003. Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnology and Oceanography 48: 675–685.

    Article  CAS  Google Scholar 

  • Fontaneto, D., E. A. Herniou, C. Boschetti, M. Caprioli, G. Melone, C. Ricci & T. G. Barraclough, 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biology 5: 914–921.

    Article  CAS  Google Scholar 

  • Fontaneto, D., C. Boschetti & C. Ricci, 2008. Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps. Journal of Evolutionary Biology 21: 580–587.

    Article  CAS  PubMed  Google Scholar 

  • Fontaneto, D., N. Iakovenko, I. Eyres, M. Kaya, M. Wyman & T. G. Barraclough, 2011. Cryptic diversity in the genus Adineta Hudson & Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia. doi:10.1007/s10750-010-0481-7.

  • Funch, P., M. V. Sørensen & M. Obst, 2005. On the phylogenetic position of Rotifera—have we come any further? Hydrobiologia 546: 11–28.

    Article  CAS  Google Scholar 

  • Fussmann, G. F., S. P. Ellner & N. G. Hairston, 2003. Evolution as a critical component of plankton dynamics. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 1015–1022.

    Article  Google Scholar 

  • Fussmann, G. F., M. Loreau & P. A. Abrams, 2007. Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology 21: 465–477.

    Article  Google Scholar 

  • Garcia-Varela, M. & S. A. Nadler, 2006. Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics and Evolution 40: 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Garey, J. R., T. J. Near, M. R. Nonnemacher & S. A. Nadler, 1996. Molecular evidence for Acanthocephala as a subtaxon of Rotifera. Journal of Molecular Evolution 43: 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Garey, J. R., A. Schmidt-Rhaesa, T. J. Near & S. A. Nadler, 1998. The evolutionary relationships of rotifers and acanthocephalans. Hydrobiologia 388: 83–91.

    Article  Google Scholar 

  • Gladyshev, E. & M. Meselson, 2008. Extreme resistance of bdelloid rotifers to ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America 105: 5139–5144.

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev, E. A., M. Meselson & I. R. Arkhipova, 2007. A deep-branching clade of retrovirus-like retrotransposons in bdelloid rotifers. Gene 390: 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Gladyshev, E. A., M. Meselson & I. R. Arkhipova, 2008. Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210–1213.

    Article  CAS  PubMed  Google Scholar 

  • Gomez, A., 2005. Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiologia 546: 83–99.

    Article  CAS  Google Scholar 

  • Gomez, A. & T. W. Snell, 1996. Sibling species and cryptic speciation in the Brachionus plicatilis species complex (Rotifera). Journal of Evolutionary Biology 9: 953–964.

    Article  Google Scholar 

  • Gomez, A., M. Serra, G. R. Carvalho & D. H. Lunt, 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.

    CAS  PubMed  Google Scholar 

  • Herlyn, H., O. Piskurek, J. Schmitz, U. Ehlers & H. Zischler, 2003. The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution 26: 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Hur, J. H., K. Van Doninck, M. L. Mandigo & M. Meselson, 2009. Degenerate tetraploidy was established before bdelloid rotifer families diverged. Molecular Biology and Evolution 26: 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Jones, L. E. & S. P. Ellner, 2007. Effects of rapid prey evolution on predator-prey cycles. Journal of Mathematical Biology 55: 541–573.

    Article  PubMed  Google Scholar 

  • Jones, L. E., L. Becks, S. P. Ellner, N. G. Hairston, T. Yoshida & G. F. Fussmann, 2009. Rapid contemporary evolution and clonal food web dynamics. Philosophical Transactions of the Royal Society B-Biological Sciences 364: 1579–1591.

    Article  Google Scholar 

  • Kubanek, J., T. W. Snell & C. Pirkle, 2007. Chemical defense of the red tide dinoflagellate Karenia brevis against rotifer grazing. Limnology and Oceanography 52: 1026–1035.

    Article  Google Scholar 

  • Mark Welch, D. B., 2000. Evidence from a protein-coding gene that acanthocephalans are rotifers. Invertebrate Biology 119: 17–26.

    Article  Google Scholar 

  • Mark Welch, D. B. & M. Meselson, 2000. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215.

    Article  CAS  PubMed  Google Scholar 

  • Mark Welch, D. B. & M. S. Meselson, 2001. Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proceedings of the National Academy of Sciences of the United States of America 98: 6720–6724.

    Article  CAS  PubMed  Google Scholar 

  • Mark Welch, D. B., M. P. Cummings, D. M. Hillis & M. Meselson, 2004a. Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proceedings of the National Academy of Sciences of the United States of America 101: 1622–1625.

    Article  PubMed  Google Scholar 

  • Mark Welch, J. L., D. B. Mark Welch & M. Meselson, 2004b. Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America 101: 1618–1621.

    Article  PubMed  Google Scholar 

  • Mark Welch, D. B., J. L. Mark Welch & M. Meselson, 2008. Evidence for degenerate tetraploidy in bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America 105: 5145–5149.

    Article  PubMed  Google Scholar 

  • Maynard Smith, J., 1986. Contemplating life without sex. Nature 324: 300–301.

    Article  Google Scholar 

  • Melone, G., C. Ricci, H. Segers & R. L. Wallace, 1998. Phylogenetic relationships of phylum Rotifera with emphasis on the families of Bdelloidea. Hydrobiologia 388: 101–107.

    Article  Google Scholar 

  • Morran, L. T., M. D. Parmenter & P. C. Phillips, 2009. Mutation load and rapid adaptation favour outcrossing over self-fertilization. Nature 462: 350–352.

    Article  CAS  PubMed  Google Scholar 

  • Poinar, G. O. & C. Ricci, 1992. Bdelloid rotifers in Dominican amber: evidence for parthenogenetic continuity. Experientia 48: 408–410.

    Article  Google Scholar 

  • Pouchkina-Stantcheva, N. N., B. M. McGee, C. Boschetti, D. Tolleter, S. Chakrabortee, A. V. Popova, F. Meersman, D. Macherel, D. K. Hincha & A. Tunnacliffe, 2007. Functional divergence of former alleles in an ancient asexual invertebrate. Science 318: 268–271.

    Article  CAS  PubMed  Google Scholar 

  • Schurko, A. M., M. Neiman & J. M. Logsdon, 2009. Signs of sex: what we know and how we know it. Trends in Ecology & Evolution 24: 208–217.

    Article  Google Scholar 

  • Sørensen, M. V. & G. Giribet, 2006. A modern approach to rotiferan phylogeny: combining morphological and molecular data. Molecular Phylogenetics and Evolution 40: 585–608.

    Article  PubMed  Google Scholar 

  • Swanstrom, J., K. Chen, K. Castillo, T. G. Barraclough & D. Fontaneto, 2011. Testing for evidence of inefficient selection in bdelloid rotifers: do sample size and habitat differences matter? Hydrobiologia. doi:10.1007/s10750-010-0480-8.

  • Thompson, J. N., 1998. Rapid evolution as an ecological process. Trends in Ecology & Evolution 13: 329–332.

    Article  Google Scholar 

  • Waggoner, B. M. & G. O. Poinar, 1993. Fossil habdotrochid rotifers in Dominican amber. Experientia 49: 354–357.

    Article  Google Scholar 

  • Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera. Part 1: Biology, Ecology and Systematics. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Backhuys Publishers, Ghent, The Netherlands.

    Google Scholar 

  • Wilson, C. G. & P. W. Sherman, 2010. Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 327: 574–576.

    Article  CAS  PubMed  Google Scholar 

  • Witek, A., H. Herlyn, I. Ebersberger, D. B. Mark Welch & T. Hankeln, 2009. Support for the monophyletic origin of Gnathifera from phylogenomics. Molecular Phylogenetics and Evolution 53: 1037–1041.

    Google Scholar 

  • Witek, A., H. Herlyn, A. Meyer, L. Boell, G. Bucher & T. Hankeln, 2008. EST based phylogenomics of Syndermata questions monophyly of Eurotatoria. BMC Evolutionary Biology 8: 345.

    Article  PubMed  Google Scholar 

  • Yoshida, T., L. E. Jones, S. P. Ellner, G. F. Fussmann & N. G. Hairston, 2003. Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424: 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, T., N. G. Hairston & S. P. Ellner, 2004. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris. Proceedings of the Royal Society of London Series B-Biological Sciences 271: 1947–1953.

    Article  Google Scholar 

  • Yoshida, T., S. P. Ellner, L. E. Jones, B. J. M. Bohannan, R. E. Lenski & N. G. Hairston, 2007. Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biology 5: 1868–1879.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I acknowledge support through an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor F. Fussmann.

Additional information

Guest editors: N. Walz, R. Adrian, J.J. Gilbert, M.T. Monaghan, G. Weithoff & H. Zimmermann-Timm / Rotifera XII: New aspects in rotifer evolution, genetics, reproduction, ecology and biogeography

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fussmann, G.F. Rotifers: excellent subjects for the study of macro- and microevolutionary change. Hydrobiologia 662, 11–18 (2011). https://doi.org/10.1007/s10750-010-0515-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0515-1

Keywords

Navigation