Skip to main content

Uptake of dissolved nickel by Elodea canadensis and epiphytes influenced by fluid flow conditions

Abstract

Using a laboratory mesocosm consisting of live plants and epiphytes grown in a re-circulating flume, dissolved nickel uptake by Elodea canadensis Michaux is compared with nickel uptake by the associated epiphytic community under a range of flow conditions. A flux model was developed and applied to the measured tissue nickel concentration data and generated three parameters descriptive of nickel uptake: uptake rate, equilibrium concentration, and time to equilibrium. The relationship of these parameters to flow conditions, represented by the dimensionless variable Reynolds number, was compared between epiphytes and plants. Water flow was shown to have a stronger effect on the uptake performance of epiphytes than that of plants, implying that water-side mass transfer plays a more important role in epiphytic nickel uptake than it does in plant nickel uptake. Although nickel concentrations were much higher in the epiphyte community than in E. canadensis, more total nickel was sequestered in E. canadensis. This research indicates that fluid flow conditions alter nickel uptake by E. canadensis and the epiphytic community and that the two have different preferential flow regimes. It also suggests the promising bioremediation potential of both in moving fluids in aquatic environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Azcue, J. & A. Mudroch, 1994. Comparison of different washing, ashing, and digestion methods for the analysis of trace-elements in vegetation. International Journal of Environmental Analytical Chemistry 57: 151–162.

    CAS  Article  Google Scholar 

  • Baldy, V., M. Tremolieres, M. Andrieu & J. Belliard, 2007. Changes in phosphorus content of two aquatic macrophytes according to water velocity, trophic status and time period in hardwater streams. Hydrobiologia 575: 343–351.

    CAS  Article  Google Scholar 

  • Brooks, R. R., J. Lee, R. D. Reeves & T. Jaffre, 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7: 49–57.

    CAS  Article  Google Scholar 

  • Chen, C., D. Huang & J. Liu, 2009. Functions and toxicity of nickel in plants: recent advances and future prospects. CLEAN—Soil, Air, Water 37: 304–313.

    CAS  Article  Google Scholar 

  • Cornelisen, C. D. & F. I. M. Thomas, 2002. Ammonium uptake by seagrass epiphytes: isolation of the effects of water velocity using an isotope label. Limnology and Oceanography 47: 1223–1229.

    Article  Google Scholar 

  • Cornelisen, C. D. & F. I. M. Thomas, 2006. Water flow enhances ammonium and nitrate uptake in a seagrass community. Marine Ecology Progress Series 312: 1–13.

    Article  Google Scholar 

  • Dhir, B., P. Sharmila & P. P. Saradhi, 2009. Potential of aquatic macrophytes for removing contaminants from the environment. Critical Reviews in Environmental Science and Technology 39: 754–781.

    CAS  Article  Google Scholar 

  • Fritioff, A. & M. Greger, 2003. Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. International Journal of Phytoremediation 5: 211–224.

    CAS  Article  PubMed  Google Scholar 

  • Fritioff, A., L. Kautsky & M. Greger, 2005. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution 133: 265–274.

    CAS  Article  PubMed  Google Scholar 

  • Ghisalberti, M. & H. M. Nepf, 2002. Mixing layers and coherent structures in vegetated aquatic flows. Journal of Geophysical Research—Oceans 107: 3011.

    Article  Google Scholar 

  • Gosselain, V., C. Hudon, A. Cattaneo, P. Gagnon, D. Planas & D. Rochefort, 2005. Physical variables driving epiphytic algal biomass in a dense macrophyte bed of the St. Lawrence River (Quebec, Canada). Hydrobiologia 534: 10–22.

    Article  Google Scholar 

  • Gross, E. M., C. Feldbaum & A. Graf, 2003. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506: 559–565.

    Article  Google Scholar 

  • Haferburg, G. & E. Kothe, 2007. Microbes and metals: interactions in the environment. Journal of Basic Microbiology 47: 453–467.

    CAS  Article  PubMed  Google Scholar 

  • Hudson, R. J. M., 1998. Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. Science of the Total Environment 219: 95–115.

    CAS  Article  Google Scholar 

  • Hurd, C. L., P. J. Harrison & L. D. Druehl, 1996. Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites. Marine Biology 126: 205–214.

    CAS  Article  Google Scholar 

  • Kahkonen, M. A. & P. K. G. Manninen, 1998. The uptake of nickel and chromium from water by Elodea canadensis at different nickel and chromium exposure levels. Chemosphere 36: 1381–1390.

    CAS  Article  Google Scholar 

  • Kays, W. M., M. E. Crawford & B. Weigand, 2005. Convective Heat and Mass Transfer, 4th ed. McGraw-Hill, New York.

    Google Scholar 

  • Kljakovic-Gaspic, Z., B. Antolic, T. Zvonaric & A. Baric, 2004. Distribution of cadmium and lead in Posidonia oceanica (L.) delile from the middle Adriatic sea. Fresenius Environmental Bulletin 13: 1210–1215.

    CAS  Google Scholar 

  • Koch, E. W., 1994. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa. Marine Biology 118: 767–776.

    Article  Google Scholar 

  • Lakatos, G., M. Kiss & I. Meszaros, 1999. Heavy metal content of common reed (Phragmites australis/Cav./Trin. ex Steudel) and its periphyton in Hungarian shallow standing waters. Hydrobiologia 415: 47–53.

    CAS  Article  Google Scholar 

  • Laufer, J., 1951. Investigation of turbulent flow in a two-dimensional channel. National Advisory Committee for Aeronautics Report 1053: 10–14.

    Google Scholar 

  • Losee, R. F. & R. G. Wetzel, 1993. Littoral flow-rates within and around submersed macrophyte communities. Freshwater Biology 29: 7–17.

    Article  Google Scholar 

  • Madsen, T. V. & E. Warncke, 1983. Velocities of currents around and within submerged aquatic vegetation. Archiv Für Hydrobiologie 97: 389–394.

    Google Scholar 

  • Maleva, M. G., G. F. Nekrasova, P. Malec, M. N. V. Prasad & K. Strzalka, 2009. Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere 77: 392–398.

    CAS  Article  PubMed  Google Scholar 

  • Mortimer, D. C., 1985. Fresh-water aquatic macrophytes as heavy-metal monitors—the Ottawa River experience. Environmental Monitoring and Assessment 5: 311–323.

    CAS  Article  Google Scholar 

  • Pelton, D. K., S. N. Levine & M. Braner, 1998. Measurements of phosphorus uptake by macrophytes and epiphytes from the LaPlatte River (VT) using P-32 in stream microcosms. Freshwater Biology 39: 285–299.

    Article  Google Scholar 

  • Rai, P. K., 2009. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology 39: 697–753.

    CAS  Article  Google Scholar 

  • Raupach, M. R., J. J. Finnigan & Y. Brunet, 1996. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorology 78: 351–382.

    Article  Google Scholar 

  • Samecka-Cymerman, A. & A. J. Kempers, 2003. Biomonitoring of water pollution with Elodea canadensis. A case study of three small Polish rivers with different levels of pollution. Water, Air, and Soil Pollution 145: 139–153.

    CAS  Article  Google Scholar 

  • Sand-Jensen, K. & O. Pedersen, 1999. Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biology 42: 315–328.

    Article  Google Scholar 

  • Sand-Jensen, K., N. P. Revsbech & B. B. Jorgensen, 1985. Microprofiles of oxygen in epiphyte communities on submerged macrophytes. Marine Biology 89: 55–62.

    Article  Google Scholar 

  • Sanford, L. P. & S. M. Crawford, 2000. Mass transfer versus kinetic control of uptake across solid-water boundaries. Limnology and Oceanography 45: 1180–1186.

    CAS  Article  Google Scholar 

  • Sato, H., M. Yui & H. Yoshikawa, 1996. Ionic diffusion coefficient of Cs+, Pb2+, Sm3+, Ni2+, SeO4 2− and TcO4 in free water determined from conductivity measurements. Journal of Nuclear Science and Technology 33: 950–955.

    CAS  Article  Google Scholar 

  • Schlacher-Hoenlinger, M. A. & T. A. Schlacher, 1998. Accumulation, contamination, and seasonal variability of trace metals in the coastal zone—patterns in a seagrass meadow from the Mediterranean. Marine Biology 131: 401–410.

    CAS  Article  Google Scholar 

  • Thomas, F. I. M. & M. J. Atkinson, 1997. Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnology and Oceanography 42: 81–88.

    CAS  Article  Google Scholar 

  • Weis, J. S. & P. Weis, 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International 30: 685–700.

    CAS  Article  PubMed  Google Scholar 

  • Wilson, N. R. & R. H. Shaw, 1977. Higher-order closure model for canopy flow. Journal of Applied Meteorology 16: 1197–1205.

    Article  Google Scholar 

  • Zhang, Y. S., Z. Y. Zhang, K. Suzuki & T. Maekawa, 2003. Uptake and mass balance of trace metals for methane producing bacteria. Biomass & Bioenergy 25: 427–433.

    CAS  Article  Google Scholar 

  • Zheljazkov, V. D. & P. McNeil, 2008. Comparison of five digestion procedures for recovery of nutrients and trace elements in plant tissue. Journal of Plant Nutrition 31: 1937–1946.

    CAS  Article  Google Scholar 

  • Zimba, P. V. & M. S. Hopson, 1997. Quantification of epiphyte removal efficiency from submersed aquatic plants. Aquatic Botany 58: 173–179.

    Article  Google Scholar 

Download references

Acknowledgments

The interdisciplinary nature of this study was facilitated by the National Science Foundation’s Integrative Graduate Education and Research Traineeship Program (NSF IGERT) which supported two of the authors. This study was additionally supported by the National Center for Earth-surface Dynamics (NCED), a Science and Technology Center funded by the office of Integrative Activities of the National Science Foundation (under agreement number EAR-0120914), and a Block grant from the University of Minnesota, Department of Ecology, Evolution and Behavior. We thank Jim Cotner and Claudia Neuhauser for their guidance in the development of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy T. Hansen.

Additional information

Handling editor: S.M. Thomaz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hansen, A.T., Stark, R.A. & Hondzo, M. Uptake of dissolved nickel by Elodea canadensis and epiphytes influenced by fluid flow conditions. Hydrobiologia 658, 127–138 (2011). https://doi.org/10.1007/s10750-010-0456-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0456-8

Keywords

  • Heavy metal
  • Nickel
  • Velocity
  • Uptake
  • Epiphyte
  • Macrophyte