Skip to main content

Advertisement

Log in

Trophic ecology of an aquatic mite (Piona carnea) preying on Daphnia pulex: effects of predator density, nutrient supply and a second predator (Chaoborus americanus)

  • TRIBUTE TO STANLEY DODSON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As compared to other aquatic invertebrates, relatively little is known about the ecology of predaceous, pelagic water mites. Studies to date do, however, show that water mites can be important components of aquatic food webs. Here, we used manipulative field experiments to better understand the trophic ecology of a predaceous water mite (Piona carnea). Three experiments were conducted that examined (i) the effect of P. carnea density on the per-capita interaction strength (PCIS) of P. carnea preying on zooplankton; (ii) how the effects of P. carnea predation change with prey productivity; and (iii) how P. carnea interacts with another pelagic predator (Chaoborus americanus) to affect a shared prey species (Daphnia pulex). Results from the first experiment showed that P. carnea can strongly impact D. pulex populations, and that the PCIS of P. carnea decreases with an increase in P. carnea density. The second experiment showed that the effects of P. carnea on D. pulex populations depend on bottom-up factors that influence D. pulex population biomass and the reproductive potential of a D. pulex population relative to its size. The third experiment uncovered a non-additive interaction between P. carnea and C. americanus that resulted in a risk reducing situation for D. pulex in the presence of both predators. Together these experiments show that P. carnea imposes a strong negative impact on D. pulex, that the magnitude of this negative impact is dependent on the P. carnea density and the productivity of the system, and that the trophic ecology of P. carnea is modified by coexisting predator species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abrams, P. A., 1996. Dynamics and interactions in food webs with adaptive foragers. In Polis, G. A. & K. O. Winemiller (eds), Food Webs: Integration of Pattern and Process. Chapman & Hall, New York: 113–121.

    Google Scholar 

  • Abrams, P. A., 2001. Describing and quantifying interspecific interactions: a commentary on recent approaches. Oikos 94: 209–218.

    Article  Google Scholar 

  • Berlow, E. L., S. A. Navarrete, C. J. Briggs, M. E. Power & B. A. Menge, 1999. Quantifying variation in the strengths of species interactions. Ecology 80: 2206–2224.

    Article  Google Scholar 

  • Berlow, E. L., A. Neutel, J. E. Cohen, P. C. De Ruiter, B. Ebenman, M. Emmerson, J. W. Fox, V. A. A. Jansen, J. I. Jones, G. D. Kokkoris, D. O. Logofet, A. J. McKane, J. M. Montoya & O. Petchey, 2004. Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology 73: 585–598.

    Article  Google Scholar 

  • Black, A. R. & S. I. Dodson, 2003. Ethanol: a better preservation technique for Daphnia. Limnology and Oceanography Methods 1: 45–50.

    Article  Google Scholar 

  • Burks, R. L., E. Jeppesen & D. M. Lodge, 2001. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. Journal of the North American Benthological Society 20: 615–628.

    Article  Google Scholar 

  • Butler, M. I. & C. W. Burns, 1993. Water mite predation on planktonic Cladocera: parallel curve analysis of functional responses. Oikos 66: 5–16.

    Article  Google Scholar 

  • Byrnes, J. & J. D. Witman, 2003. Impact assessment of an invasive flatworm, Convoluta convoluta, in the Southern Gulf of Maine. Journal of Experimental Marine Biology and Ecology 293: 173–191.

    Article  Google Scholar 

  • DeWitt, T. J. & R. B. Langerhans, 2003. Multiple prey traits, multiple predators: keys to understanding complex community dynamics. Journal of Sea Research 49: 143–155.

    Article  Google Scholar 

  • Eitam, A., L. Blaustein & M. Mangel, 2002. Effects of Anisops sardea (Hemiptera: Notonectidae) on oviposition habitat selection by mosquitoes and other dipterans and on community structure in artificial pools. Hydrobiologia 485: 183–189.

    Article  Google Scholar 

  • Eklov, P. & T. VanKooten, 2001. Facilitation among piscivorous predators: effects of prey habitat use. Ecology 82: 2486–2494.

    Google Scholar 

  • Erwin, R. M., T. B. Eyler, J. S. Hatfield & S. McGary, 1998. Diets of nestling gull-billed terns in coastal Virginia. Colonial Waterbirds 21: 323–327.

    Article  Google Scholar 

  • Gliwicz, Z. M. & E. Biesiadka, 1975. Pelagic water mites (Hydracarina) and their effect on the plankton community in the Neotropical man-made lake. Archiv für Hydrobiologie 76: 65–88.

    Google Scholar 

  • Grubbs, F. E., 1950. Sample criteria for testing outlying observations. Annals of Mathematical Statistics 21: 27–58.

    Article  Google Scholar 

  • Hampton, S. E., J. J. Gilbert & C. W. Burns, 2000. Direct and indirect effects of juvenile Buenoa macrotibialis (Hemiptera: Notonectidae) on the zooplankton of a shallow pond. Limnology and Oceanography 45: 1006–1012.

    Article  Google Scholar 

  • Hassell, M. P., J. H. Lawton & J. R. Beddington, 1977. Sigmoid functional responses by invertebrate predators and parasitoids. Journal of Animal Ecology 46: 249–262.

    Article  Google Scholar 

  • Johnson, D. M., C. L. Pierce, T. H. Martin, C. N. Watson, R. E. Bohanan & P. H. Crowley, 1987. Prey depletion by odonate larvae: combining evidence from multiple field experiments. Ecology 68: 1459–1465.

    Article  Google Scholar 

  • Kerfoot, W. C., 1982. A question of taste: Crypsis and warning coloration in freshwater zooplankton communities. Ecology 63: 538–554.

    Article  Google Scholar 

  • Liljendahl-Nurminen, A., J. Horppila, T. Malinen, P. Eloranta, M. Vinni, E. Alajarvi & S. Valtonen, 2003. The supremacy of invertebrate predators over fish – factors behind the unconventional seasonal dynamics of cladocerans in Lake Hiidenvesi. Archiv für Hydrobiologie 158: 75–96.

    Article  Google Scholar 

  • Losey, J. E. & R. F. Denno, 1999. Factors facilitating synergistic predation: the central role of synchrony. Ecological Applications 9: 378–386.

    Article  Google Scholar 

  • Matveev, V. & C. C. Martinez, 1990. Can water mites control populations of planktonic Cladocera? Hydrobiologia 198: 227–231.

    Article  Google Scholar 

  • Matveev, V. F., C. C. Martinez & S. M. Frutos, 1989. Predatory–prey relationships in subtropical zooplankton: water mite against cladocerans in an argentine lake. Oecologia 79: 489–495.

    Article  Google Scholar 

  • McCann, K., A. Hastings & G. R. Huxel, 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.

    Article  CAS  Google Scholar 

  • Mistri, M., 2003. Foraging behaviour and mutual interference in the Mediterranean shore crab, Carcinus aestuarii, preying upon the immigrant mussel Musculista senhousia. Estuarine Coastal Shelf Science 56: 155–159.

    Article  Google Scholar 

  • Navarrete, S. A. & E. L. Berlow, 2006. Variable interaction strengths stabilize marine community pattern. Ecology Letters 9: 526–536.

    Article  PubMed  Google Scholar 

  • Navarrete, S. A. & B. A. Menge, 1996. Keystone predation and interaction strength: interactive effects of predators on their main prey. Ecological Monographs 66: 409–429.

    Article  Google Scholar 

  • Neutel, A. M., J. A. P. Heesterbeek & P. C. de Ruiter, 2002. Stability in real food webs: weak links in long loops. Science 296: 1120–1123.

    Article  PubMed  CAS  Google Scholar 

  • Novak, M. & J. T. Wootton, 2008. Estimating nonlinear interaction strengths: an observation-based method for species-rich food webs. Ecology 89: 2083–2089.

    Article  PubMed  Google Scholar 

  • Nowlin, W. H. & R. W. Drenner, 2000. Context-dependent effects of bluegill in experimental mesocosm communities. Oecologia 122: 421–426.

    Article  Google Scholar 

  • Nystrom, P., O. Svensson, B. Lardner, C. Bronmark & W. Graneli, 2001. The influence of multiple introduced predators on a littoral pond community. Ecology 82: 1023–1039.

    Google Scholar 

  • O’Gorman, E. J. & M. C. Emmerson, 2009. Perturbations to trophic interactions and the stability of complex food webs. Proceedings of the National Academy of Sciences of the United States of America 106: 13393–13398.

    Article  PubMed  Google Scholar 

  • Pagano, M., M. A. Koffi, P. Cecchi, D. Corbin, G. Champalbert & L. Saint-Jean, 2003. An experimental study of the effects of nutrient supply and Chaoborus predation on zooplankton communities of a shallow tropical reservoir (Lake Brobo, Cote d’Ivoire). Freshwater Biology 48: 1379–1395.

    Article  Google Scholar 

  • Paine, R. T., 1992. Food-web analysis through field measurement of per capita interaction strength. Nature 355: 73–75.

    Article  Google Scholar 

  • Pattinson, K. R., J. E. Havel & R. G. Rhodes, 2003. Invasibility of a reservoir to exotic Daphnia lumholtzi: experimental assessment of diet selection and life history responses to cyanobacteria. Freshwater Biology 48: 233–246.

    Article  Google Scholar 

  • Peacor, S. D. & E. E. Werner, 2001. The contribution of trait-mediated indirect effects to the net effects of a predator. Proceedings of the National Academy of Science of the United States of America 98: 3904–3908.

    Article  CAS  Google Scholar 

  • Pieczynski, E., 1976. Ecology of water mites (Hydracarina) in lakes. Polish Ecological Studies 2: 5–54.

    Google Scholar 

  • Piraino, S., G. Fanelli & F. Boero, 2002. Variability of species’ roles in marine communities: change of paradigms for conservation priorities. Marine Biology 40: 1067–1074.

    Google Scholar 

  • Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, G. Daily, J. C. Castilla, J. Lubchenco & R. T. Paine, 1996. Challenges in the quest for keystones. Bioscience 46: 609–620.

    Article  Google Scholar 

  • Riessen, H. P., 1982. Predatory behavior and prey selectivity of the pelagic water mite Piona constricta. Canadian Journal of Fisheries and Aquatic Sciences 39: 1569–1579.

    Article  Google Scholar 

  • Rosenheim, J. A., H. K. Kaya, L. E. Ehler, J. J. Marois & B. A. Jaffee, 1995. Intraguild predation among biological-control agents – theory and evidence. Biological Control 5: 303–335.

    Article  Google Scholar 

  • Ruesink, J. L., 1998. Variation in per capita interaction strength: thresholds due to nonlinear dynamics and nonequilibrium conditions. Proceedings of the National Academy of Science of the United States of America 95: 6843–6847.

    Article  CAS  Google Scholar 

  • Sala, E. & M. H. Graham, 2002. Community-wide distribution of predator-prey interaction strength in kelp forests. Proceedings of the National Academy of Science of the United States of America 99: 3678–3683.

    Article  CAS  Google Scholar 

  • Sarnelle, O., 2003. Nonlinear effects of an aquatic consumer: causes and consequences. American Naturalist 161: 478–496.

    Article  PubMed  Google Scholar 

  • Sih, A., G. Englund & D. Wooster, 1998. Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution 13: 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Skalski, G. T. & J. F. Gilliam, 2001. Functional responses with predator interference: viable alternatives to the Holling Type II model. Ecology 82: 3083–3092.

    Article  Google Scholar 

  • Sokol-Hessner, L. & O. J. Schmitz, 2002. Aggregate effects of multiple predator species on a shared prey. Ecology 83: 2367–2372.

    Article  Google Scholar 

  • Soluk, D. A. & N. C. Collins, 1988. Synergistic interactions between fish and stoneflies – facilitation and interference among stream predators. Oikos 52: 94–100.

    Article  Google Scholar 

  • Svanback, R. & P. Eklov, 2003. Morphology dependent foraging efficiency in perch: a trade-off for ecological specialization? Oikos 102: 273–284.

    Article  Google Scholar 

  • Traxler, S. L. & B. Murphy, 1995. Experimental trophic ecology of juvenile largemouth bass, Micropterus salmoides, and blue tilapia, Oreochromis aureus. Environmental Biology of Fishes 42: 201–211.

    Article  Google Scholar 

  • Van Buskirk, J., 1988. Interactive effects of dragonfly predation in experimental pond communities. Ecology 69: 867–957.

    Article  Google Scholar 

  • Weissberger, E. J., 1999. Additive interactions between the moon snail Euspira heros and the sea star Asterias forbesi, two predators of the surfclam Spisula solidissima. Oecologia 119: 461–466.

    Article  Google Scholar 

  • Williamson, C. E., 1987. Predator–prey interactions between omnivorous diaptomid copepods and rotifers: the role of prey morphology and behavior. Limnology and Oceanography 32: 167–177.

    Article  Google Scholar 

  • Williamson, C. E. & N. M. Butler, 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnology and Oceanography 31: 393–402.

    Article  Google Scholar 

  • Wootton, J. T., 1997. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecological Monographs 67: 45–64.

    Article  Google Scholar 

  • Wootton, J. T., 2002. Indirect effects in complex ecosystems: recent progress and future challenges. Journal of Sea Research 48: 157–172.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant to J.C.S. from Eastern Washington University’s Department of Biology. Field assistance was provided by Molly Pflueger, Jessi Miller, and Karin Divens. An earlier version of the manuscript was improved with comments from Steve Stein, John Havel and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Stegen.

Additional information

Guest editors: H. J. Dumont, J. E. Havel, R. Gulati & P. Spaak / A Passion for Plankton: a tribute to the life of Stanley Dodson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegen, J.C., Ross Black, A. Trophic ecology of an aquatic mite (Piona carnea) preying on Daphnia pulex: effects of predator density, nutrient supply and a second predator (Chaoborus americanus). Hydrobiologia 668, 171–182 (2011). https://doi.org/10.1007/s10750-010-0454-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0454-x

Keywords