Hydrobiologia

, Volume 656, Issue 1, pp 233–241 | Cite as

Environmental factors influencing the species diversity of macrophytes in middle-sized streams in Latvia

AQUATIC WEEDS

Abstract

The species diversity of macrophytes and their abundance in middle-sized streams of Latvia were investigated. On the basis of environmental factors (stream width, water depth, substrate type, shading, and flow velocity), five major groups of streams were distinguished representing mutually exclusive macrophyte communities—(1) fast flowing streams on gravel substrates, (2) slow flowing streams on gravel substrates, (3) fast flowing streams on sandy substrates, (4) slow flowing streams on sandy substrates, and (5) streams with soft, silty substrates. A total of 48 macrophyte taxa were found in 72 surveyed sites. The most frequent species in the investigated streams were Sparganium emersum, S. erectum s.l., Nuphar lutea, Veronica beccabunga, as well as the invasive alien Elodea canadensis. The species richness ranged from 2 to 22 per site, and Shannon diversity index varied from 0.61 to 2.88. The highest species richness (22) was found in slow flowing streams with gravel substrates. Poor macrophyte composition was characteristic for fast flowing streams on sandy substrates.

Keywords

Environmental factors Macrophytes Middle-sized streams Latvia 

References

  1. Abolina, A., 2001. Latvijas sūnu saraksts. Latvijas Veģetācija 3: 47–87 (In Latvian).Google Scholar
  2. Abou-Handman, H., J. Haury, J. P. Hebrard, S. Dandelot & A. Cazaubon, 2005. Macrophytic communities inhabiting the Huveaune (South-East France), a river subject to natural and anthrophic disturbances. Hydrobiologia 551: 161–170.CrossRefGoogle Scholar
  3. Baatrup-Pedersen, A. & T. Riis, 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biology 42: 375–385.CrossRefGoogle Scholar
  4. Baatrup-Pedersen, A., G. Springe, T. Riis, S. E. Larsen, K. Sand-Jensen & L. M. Kjellerup Larsen, 2008. The search for reference conditions for stream vegetation in northern Europe. Freshwater Biology 53(9): 1890–1901.CrossRefGoogle Scholar
  5. Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249–257.CrossRefGoogle Scholar
  6. Dawson, F. H., 2002. Guidance for the field assessment of macrophytes of rivers within the STAR Project [available on internet at http://www.eu-star.at/frameset.htm].
  7. Demars, B. O. L. & D. M. Harper, 1998. The aquatic macrophytes of an English lowland river system: assessing response to nutrient enrichment. Hydrobiologia 384: 75–88.CrossRefGoogle Scholar
  8. European Commission, 2000. Directive 2000/60/EC. Establishing a framework for community action in the field of water policy. European Commission PE-CONS 3639/1/100 Rev 1, Luxembourg.Google Scholar
  9. Furse, M., D. Hering, O. Moog, P. Verdonschot, R. Johnson, K. Brabec, K. Gritzalis, A. Buffagni, P. Pinto, N. Friberg, J. Murray-Bligh, J. Kokes, R. Alber, P. Usseglio-Polatera, P. Haase, R. Sweeting, B. Bis, K. Szoszkiewicz, H. Soszka, G. Springe, F. Sporka & I. Krno, 2006. The STAR project: context, objectives and approaches. Hydrobiologia 566: 3–29.CrossRefGoogle Scholar
  10. Gavrilova, G. & V. Sulcs, 1999. Flora of Latvian vascular plants. List of taxa. Institute of Biology of University of Latvia, Laboratory of Botany, Riga: 136.Google Scholar
  11. Haslam, S. M., 2006. River Plants. The macrophytic vegetation of watercourses. 2nd revised ed. 438 pp.Google Scholar
  12. Holmes, N. T. H., J. R. Newman, S. Chadd, K. J. Rouen, L. Saint & F. H. Dawson, 1999. Mean Trophic Rank: A Users Manual. R&D Technical Report E38. Environment Agency of England & Wales, Bristol, UK.Google Scholar
  13. Klavins, M., V. Rodinov, I. Kokorite & I. Klavina, 1999. Chemical composition of surface waters of Latvia and runoff of dissolved substances from the territory of Latvia. Vatten 55: 97–108.Google Scholar
  14. Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.CrossRefGoogle Scholar
  15. McCune, B. & M. J. Mefford, 1999. PC-ORD. Multivariate Analyses of Ecological Data. Version 4.17. MjM Software, Gleneden Beach, Oregon USA.Google Scholar
  16. Preston, C. D. & J. M. Croft, 2001. Aquatic Plants in Britain and Ireland. Harley Books, Martins, Great Horkesley, Colchester, England: 356.Google Scholar
  17. Riis, T., 2008. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341–351.CrossRefGoogle Scholar
  18. Riis, T. & B. J. F. Biggs, 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography 48(4): 1488–1497.CrossRefGoogle Scholar
  19. Riis, T., K. Sand-Jensen & O. Vestergaard, 2000. Plant communities in lowland Danish streams: species composition and environmental factors. Aquatic Botany 66: 255–272.CrossRefGoogle Scholar
  20. Riis, T., A. M. Suren, B. Clausen & K. Sand-Jensen, 2008. Vegetation and flow regime in lowland streams. Freshwater Biology 53: 1531–1543.CrossRefGoogle Scholar
  21. Schaumburg, J., C. Schranz, J. Foerster, A. Gutowski, G. Hofmann, P. Meilinger, S. Schneider & U. Schmedtje, 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34: 283–301.Google Scholar
  22. SPSS Inc., 2000. Systat for Windows, Version 10, SPSS Inc, Chicago, IL, USA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratory of Hydrobiology, Institute of BiologyUniversity of LatviaSalaspilsLatvia

Personalised recommendations