Skip to main content

Why do phytoplankton species composition and “traditional” water quality parameters indicate different ecological status of a large shallow lake?

Abstract

Long-term data on phytoplankton species composition in large and shallow Lake Võrtsjärv indicated a sharp deterioration of the ecological status at the end of the 1970s. The more traditional water quality indicators, such as the concentrations of nutrients and chlorophyll a, phytoplankton biomass, and Secchi depth, failed to capture this tipping point or even showed an improvement of the status at that time. As the shift coincided with a large increase of the lake’s water level (WL), we hypothesized that direct effect of the changing WL on traditional water quality indicators might have blurred the picture. We removed statistically the direct effect of the WL and the seasonality from the traditional water quality indicators in order to minimize the effects of natural variability. The average of the standardised water quality indicators, used as a proxy for the ecological status, distinguished a period of fast eutrophication in the first half of the 1970s (not captured by the phytoplankton species index), a fast improvement at the end of the 1970s (when the species index showed deterioration) followed by a continuous deterioration trend (when the species index remained rather constant). The causes of this inconsistency are discussed in the light of the alternative stable states theory and the priority of biotic indicators stipulated by the EU Water Framework Directive.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Carstensen, J., 2007. Statistical principles for ecological status classification of Water Framework Directive monitoring data. Marine Pollution Bulletin 55: 3–15.

    CAS  Article  PubMed  Google Scholar 

  • Carstensen, J. & P. Henriksen, 2009. Phytoplankton biomass response to nitrogen inputs: a method for WFD boundary setting applied to Danish coastal waters. Hydrobiologia 633: 137–149.

    CAS  Article  Google Scholar 

  • CIS, 2003. River and Lakes—Typology, Reference Conditions and Classification Systems. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance document 10, European Commission: 86 pp [available on internet at http://circa.europa.eu].

  • Cleveland, W. P. & G. C. Tiao, 1976. Decomposition of seasonal time series: a model for the Census X-11 program. Journal of the American Statistical Association 71: 581–587.

    Article  Google Scholar 

  • Directive, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327: 1–72.

  • Frédéric, R. & E. Luc, 2005. Role of diatoms in the application of the Water Framework Directive in Europe: recent developments in France. Diatomededelingen 28–29: 31–35 [available on internet at http://membres.multimania.fr/rimetfrederic/Rimet-diatomededelingen-2005.pdf].

  • Gardner, E. S. Jr., 1985. Exponential smoothing: the state of the art. Journal of Forecasting 4: 1–28.

    Article  Google Scholar 

  • George, D. G., S. C. Maberly & D. P. Hewitt, 2004. The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biology 49: 760–774.

    Article  Google Scholar 

  • Gervais, F., S. Berger, I. Schönfelder & R. Rusche, 1999. Basic limnological characteristics of the shallow eutrophic lake Grimnitzsee (Brandenburg, Germany) Limnologica. Ecology and Management of Inland Waters 29: 105–119.

    CAS  Article  Google Scholar 

  • Hurrell, J. W., 1995. Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269: 676–679.

    CAS  Article  PubMed  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584: 239–252.

    CAS  Article  Google Scholar 

  • Kaiblinger, C., O. Anneville, R. Tadonleke, F. Rimet, J. C. Druart, J. Guillard & M. T. Dokulil, 2009. Central-European water quality indices applied to long-term data from peri-alpine lakes: test and possible improvements. Hydrobiologia 633: 67–74.

    CAS  Article  Google Scholar 

  • Karr, J. R. & E. W. Chu, 1997. Biological Monitoring and Assessment: Using Multimetric Indexes Effectively. EPA 235-R07-001. University of Washington, Seattle: 149 pp.

  • Kendall, M. G., 1938. A new measure of rank correlation. Biometrika 30: 81–93.

    Google Scholar 

  • Loftis, J. C., G. B. McBride & J. C. Ellis, 1991. Considerations of scale in water quality monitoring and data analysis. Journal of the American Water Resources Association 27: 255–264.

    CAS  Article  Google Scholar 

  • Massol, F., P. David, D. Gerdeaux & P. Jarne, 2007. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. Journal of Animal Ecology 76: 538–551.

    Article  PubMed  Google Scholar 

  • Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: how Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502: 123–132.

    Article  Google Scholar 

  • Mischke, U., U. Riedmüller, E. Hoehn, I. Schönfelder & B. Nixdorf, 2008. Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In Mischke, U. & B. Nixdorf (eds), Gewäserreport (Nr. 10), Brandenburg Technical University of Cottbus, Cottbus. ISBN 978-3-940471-06-2, BTUC-AR 2/2008: 117–146.

  • Murphy, K. J., M. P. Kennedy, V. McCarthy, M. T. Ó’Hare, K. Irvine & C. Adams, 2002. A Review of Ecology Based Classification Systems for Standing Freshwaters. SNIFFER Project Number W(99)65. Environment Agency R&D Technical Report: E1-091/TR.

  • Nõges, P. 2003. Milliseks hinnata Võrtsjärve praegust ökoloogilist seisundit fütoplanktonis 90 aasta jooksul toimunud muutuste põhjal? (How to evaluate the ecological quality of Lake Võrtsjärv on the basis of phytoplankton changes during 90 years?) In Möls, T., J. Haberman, L. Kongo, E. Kukk. & E. Möls (eds), Eesti LUS-i Aastaraamat 81, Nordon, Tartu: 60–81.

  • Nõges, T., 2009. Relationships between lake morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633: 33–43.

    Article  Google Scholar 

  • Nõges, P. & A. Järvet, 1995. Water level control over light conditions in shallow lakes. Report Series in Geophysics. Report No 32. University of Helsinki, Helsinki: 81–92.

  • Nõges, P. & T. Nõges, 1998. The effect of fluctuating water level on the ecosystem of Lake Võrtsjärv, Central Estonia. In Proceedings of the Estonian Academy of Sciences. Biology, Ecology 47: 98-113.

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 409: 277–283.

    Article  Google Scholar 

  • Nõges, P. & T. Nõges, 2006. Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environment Research 11: 67–80.

    Google Scholar 

  • Nõges, P., T. Feldmann, J. Haberman, A. Järvalt, A. Kangur, K. Kangur, H. Timm, T. Timm, A. Tuvikene & P. Zingel, 2001. Deviation of Lake Võrtsjärv from its pristine status documented 90 years ago. In: Proceedings of the 9th International Conference on the Conservation and Management of Lakes, Session 5: 221–224.

  • Nõges, P., W. Van de Bund, A. C. Cardoso & A. S. Heiskanen, 2007a. Impact of climatic variability on parameters used in typology and ecological quality assessment of surface waters–implications on the Water Framework Directive. Hydrobiologia 584: 373–379.

    Article  Google Scholar 

  • Nõges, T., A. Järvet, A. Kisand, R. Laugaste, E. Loigu, B. Skakalski & P. Nõges, 2007b. Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia 584: 253–264.

    Article  Google Scholar 

  • Nõges, P., U. Mischke, R. Laugaste & A. G. Solimini, 2010a. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.

    Article  Google Scholar 

  • Nõges, T., L. Tuvikene & P. Nõges, 2010b. Contemporary trends of temperature, nutrient loading and water quality in large lakes Peipsi and Võrtsjärv, Estonia. Aquatic Ecosystem Health and Management 13: 143–153.

    Article  Google Scholar 

  • Philander, S. G., 1990. El Niño, La Niña and the Southern Oscillation. Academic Press, San Diego: 293 pp.

  • Reist, J. D., 1986. An empirical evaluation of coefficients used in residual and allometric adjustment of size covariation. Canadian Journal of Zoology 64: 1363–1368.

    Article  Google Scholar 

  • Rodó, X., E. Baert & F. A. Comin, 1997. Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Climate Dynamics 13: 275–284.

    Article  Google Scholar 

  • Rodríguez, M. A. & P. Magnan, 1995. Application of multivariate analyses in studies of the organization and structure of fish and invertebrate communities. Aquatic Sciences—Research Across Boundaries 57: 199–216.

    Google Scholar 

  • Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342(343): 107–115.

    Article  Google Scholar 

  • Scheffer, M., 2004. Ecology of Shallow Lakes. Kluwer Academic publishers, London: 374 pp.

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    CAS  Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Article  Google Scholar 

  • Tilzer, M. M. & C. Serruya (eds), 1990. Large lakes: Ecological Structure and Function. Springer-Verlag, Berlin.

    Google Scholar 

  • Van Liere, L. & R. D. Gulati, 1992. Restoration and recovery of shallow eutrophic lake ecosystems in The Netherlands: epilogue. Hydrobiologia 233: 283–287.

    Article  Google Scholar 

  • von zur Mühlen, L. 1918. Zur Geologie und Hüdrologie des Wirtsjerwsees. Abhandlungen der Königlichen Preussischen Geologischen Landesanstalt, Neue Folge, Berlin: 83.

  • von zur Mühlen, M. & G. Schneider, 1920. Der See Wirzjerw in Livland. Archiv für die Naturkunde des Ostbaltikums 14: 1–156.

  • Worsley, K. J., 1979. On the likelihood ratio test for a shift in location of normal populations. Journal of the American Statistical Association 74: 365–367.

    Article  Google Scholar 

  • Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Archiv für Hydrobiologie 57: 389–407.

    Google Scholar 

Download references

Acknowledgments

The study was supported by Estonian target funding project SF 0170011508, by grant 7600 from Estonian Science Foundation, and RE 201—the Estonian Environmental Monitoring Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Tuvikene.

Additional information

Guest editors: T. Blenckner, T. Nöges, L. Tranvik, K. Pettersson, R. Naddafi / European Large Lakes II. Vulnerability of large lake ecosystems - Monitoring, management and measures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tuvikene, L., Nõges, T. & Nõges, P. Why do phytoplankton species composition and “traditional” water quality parameters indicate different ecological status of a large shallow lake?. Hydrobiologia 660, 3–15 (2011). https://doi.org/10.1007/s10750-010-0414-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0414-5

Keywords

  • Water Framework Directive
  • Phytoplankton taxonomic index
  • Trophic state indicators
  • Long-term data
  • High natural variability
  • Alternative stable states