, Volume 660, Issue 1, pp 3–15 | Cite as

Why do phytoplankton species composition and “traditional” water quality parameters indicate different ecological status of a large shallow lake?

  • Lea TuvikeneEmail author
  • Tiina Nõges
  • Peeter Nõges


Long-term data on phytoplankton species composition in large and shallow Lake Võrtsjärv indicated a sharp deterioration of the ecological status at the end of the 1970s. The more traditional water quality indicators, such as the concentrations of nutrients and chlorophyll a, phytoplankton biomass, and Secchi depth, failed to capture this tipping point or even showed an improvement of the status at that time. As the shift coincided with a large increase of the lake’s water level (WL), we hypothesized that direct effect of the changing WL on traditional water quality indicators might have blurred the picture. We removed statistically the direct effect of the WL and the seasonality from the traditional water quality indicators in order to minimize the effects of natural variability. The average of the standardised water quality indicators, used as a proxy for the ecological status, distinguished a period of fast eutrophication in the first half of the 1970s (not captured by the phytoplankton species index), a fast improvement at the end of the 1970s (when the species index showed deterioration) followed by a continuous deterioration trend (when the species index remained rather constant). The causes of this inconsistency are discussed in the light of the alternative stable states theory and the priority of biotic indicators stipulated by the EU Water Framework Directive.


Water Framework Directive Phytoplankton taxonomic index Trophic state indicators Long-term data High natural variability Alternative stable states 



The study was supported by Estonian target funding project SF 0170011508, by grant 7600 from Estonian Science Foundation, and RE 201—the Estonian Environmental Monitoring Programme.


  1. Carstensen, J., 2007. Statistical principles for ecological status classification of Water Framework Directive monitoring data. Marine Pollution Bulletin 55: 3–15.CrossRefPubMedGoogle Scholar
  2. Carstensen, J. & P. Henriksen, 2009. Phytoplankton biomass response to nitrogen inputs: a method for WFD boundary setting applied to Danish coastal waters. Hydrobiologia 633: 137–149.CrossRefGoogle Scholar
  3. CIS, 2003. River and Lakes—Typology, Reference Conditions and Classification Systems. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance document 10, European Commission: 86 pp [available on internet at].
  4. Cleveland, W. P. & G. C. Tiao, 1976. Decomposition of seasonal time series: a model for the Census X-11 program. Journal of the American Statistical Association 71: 581–587.CrossRefGoogle Scholar
  5. Directive, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327: 1–72.Google Scholar
  6. Frédéric, R. & E. Luc, 2005. Role of diatoms in the application of the Water Framework Directive in Europe: recent developments in France. Diatomededelingen 28–29: 31–35 [available on internet at].
  7. Gardner, E. S. Jr., 1985. Exponential smoothing: the state of the art. Journal of Forecasting 4: 1–28.CrossRefGoogle Scholar
  8. George, D. G., S. C. Maberly & D. P. Hewitt, 2004. The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biology 49: 760–774.CrossRefGoogle Scholar
  9. Gervais, F., S. Berger, I. Schönfelder & R. Rusche, 1999. Basic limnological characteristics of the shallow eutrophic lake Grimnitzsee (Brandenburg, Germany) Limnologica. Ecology and Management of Inland Waters 29: 105–119.CrossRefGoogle Scholar
  10. Hurrell, J. W., 1995. Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269: 676–679.CrossRefPubMedGoogle Scholar
  11. Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584: 239–252.CrossRefGoogle Scholar
  12. Kaiblinger, C., O. Anneville, R. Tadonleke, F. Rimet, J. C. Druart, J. Guillard & M. T. Dokulil, 2009. Central-European water quality indices applied to long-term data from peri-alpine lakes: test and possible improvements. Hydrobiologia 633: 67–74.CrossRefGoogle Scholar
  13. Karr, J. R. & E. W. Chu, 1997. Biological Monitoring and Assessment: Using Multimetric Indexes Effectively. EPA 235-R07-001. University of Washington, Seattle: 149 pp.Google Scholar
  14. Kendall, M. G., 1938. A new measure of rank correlation. Biometrika 30: 81–93.Google Scholar
  15. Loftis, J. C., G. B. McBride & J. C. Ellis, 1991. Considerations of scale in water quality monitoring and data analysis. Journal of the American Water Resources Association 27: 255–264.CrossRefGoogle Scholar
  16. Massol, F., P. David, D. Gerdeaux & P. Jarne, 2007. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. Journal of Animal Ecology 76: 538–551.CrossRefPubMedGoogle Scholar
  17. Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: how Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502: 123–132.CrossRefGoogle Scholar
  18. Mischke, U., U. Riedmüller, E. Hoehn, I. Schönfelder & B. Nixdorf, 2008. Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD). In Mischke, U. & B. Nixdorf (eds), Gewäserreport (Nr. 10), Brandenburg Technical University of Cottbus, Cottbus. ISBN 978-3-940471-06-2, BTUC-AR 2/2008: 117–146.Google Scholar
  19. Murphy, K. J., M. P. Kennedy, V. McCarthy, M. T. Ó’Hare, K. Irvine & C. Adams, 2002. A Review of Ecology Based Classification Systems for Standing Freshwaters. SNIFFER Project Number W(99)65. Environment Agency R&D Technical Report: E1-091/TR.Google Scholar
  20. Nõges, P. 2003. Milliseks hinnata Võrtsjärve praegust ökoloogilist seisundit fütoplanktonis 90 aasta jooksul toimunud muutuste põhjal? (How to evaluate the ecological quality of Lake Võrtsjärv on the basis of phytoplankton changes during 90 years?) In Möls, T., J. Haberman, L. Kongo, E. Kukk. & E. Möls (eds), Eesti LUS-i Aastaraamat 81, Nordon, Tartu: 60–81.Google Scholar
  21. Nõges, T., 2009. Relationships between lake morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633: 33–43.CrossRefGoogle Scholar
  22. Nõges, P. & A. Järvet, 1995. Water level control over light conditions in shallow lakes. Report Series in Geophysics. Report No 32. University of Helsinki, Helsinki: 81–92.Google Scholar
  23. Nõges, P. & T. Nõges, 1998. The effect of fluctuating water level on the ecosystem of Lake Võrtsjärv, Central Estonia. In Proceedings of the Estonian Academy of Sciences. Biology, Ecology 47: 98-113.Google Scholar
  24. Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 409: 277–283.CrossRefGoogle Scholar
  25. Nõges, P. & T. Nõges, 2006. Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environment Research 11: 67–80.Google Scholar
  26. Nõges, P., T. Feldmann, J. Haberman, A. Järvalt, A. Kangur, K. Kangur, H. Timm, T. Timm, A. Tuvikene & P. Zingel, 2001. Deviation of Lake Võrtsjärv from its pristine status documented 90 years ago. In: Proceedings of the 9th International Conference on the Conservation and Management of Lakes, Session 5: 221–224.Google Scholar
  27. Nõges, P., W. Van de Bund, A. C. Cardoso & A. S. Heiskanen, 2007a. Impact of climatic variability on parameters used in typology and ecological quality assessment of surface waters–implications on the Water Framework Directive. Hydrobiologia 584: 373–379.CrossRefGoogle Scholar
  28. Nõges, T., A. Järvet, A. Kisand, R. Laugaste, E. Loigu, B. Skakalski & P. Nõges, 2007b. Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia 584: 253–264.CrossRefGoogle Scholar
  29. Nõges, P., U. Mischke, R. Laugaste & A. G. Solimini, 2010a. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.CrossRefGoogle Scholar
  30. Nõges, T., L. Tuvikene & P. Nõges, 2010b. Contemporary trends of temperature, nutrient loading and water quality in large lakes Peipsi and Võrtsjärv, Estonia. Aquatic Ecosystem Health and Management 13: 143–153.CrossRefGoogle Scholar
  31. Philander, S. G., 1990. El Niño, La Niña and the Southern Oscillation. Academic Press, San Diego: 293 pp.Google Scholar
  32. Reist, J. D., 1986. An empirical evaluation of coefficients used in residual and allometric adjustment of size covariation. Canadian Journal of Zoology 64: 1363–1368.CrossRefGoogle Scholar
  33. Rodó, X., E. Baert & F. A. Comin, 1997. Variations in seasonal rainfall in Southern Europe during the present century: relationships with the North Atlantic Oscillation and the El Niño-Southern Oscillation. Climate Dynamics 13: 275–284.CrossRefGoogle Scholar
  34. Rodríguez, M. A. & P. Magnan, 1995. Application of multivariate analyses in studies of the organization and structure of fish and invertebrate communities. Aquatic Sciences—Research Across Boundaries 57: 199–216.Google Scholar
  35. Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342(343): 107–115.CrossRefGoogle Scholar
  36. Scheffer, M., 2004. Ecology of Shallow Lakes. Kluwer Academic publishers, London: 374 pp.Google Scholar
  37. Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.CrossRefGoogle Scholar
  38. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  39. Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.CrossRefGoogle Scholar
  40. Tilzer, M. M. & C. Serruya (eds), 1990. Large lakes: Ecological Structure and Function. Springer-Verlag, Berlin.Google Scholar
  41. Van Liere, L. & R. D. Gulati, 1992. Restoration and recovery of shallow eutrophic lake ecosystems in The Netherlands: epilogue. Hydrobiologia 233: 283–287.CrossRefGoogle Scholar
  42. von zur Mühlen, L. 1918. Zur Geologie und Hüdrologie des Wirtsjerwsees. Abhandlungen der Königlichen Preussischen Geologischen Landesanstalt, Neue Folge, Berlin: 83.Google Scholar
  43. von zur Mühlen, M. & G. Schneider, 1920. Der See Wirzjerw in Livland. Archiv für die Naturkunde des Ostbaltikums 14: 1–156.Google Scholar
  44. Worsley, K. J., 1979. On the likelihood ratio test for a shift in location of normal populations. Journal of the American Statistical Association 74: 365–367.CrossRefGoogle Scholar
  45. Zelinka, M. & P. Marvan, 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. Archiv für Hydrobiologie 57: 389–407.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesRannuEstonia
  2. 2.European Commission, Joint Research CentreInstitute for Environment and SustainabilityIspraItaly

Personalised recommendations