Advertisement

Hydrobiologia

, Volume 655, Issue 1, pp 121–135 | Cite as

Zooplankton contribution to the particulate N and P in Lake Kinneret, Israel, under changing water levels

  • Tamar Rachamim
  • Noga Stambler
  • Tamar Zohary
  • Ilana Berman-Frank
  • Gideon Gal
Primary research paper

Abstract

The association of water level changes and the relative (%) contributions of crustacean zooplankton to particulate N (PNz) and particulate P (PPz) in Lake Kinneret, Israel were studied. The PNz and PPz were assessed for a period of 10 years (1999–2008) in relation to water level (WL) changes which occurred during that period. We estimated PNz and PPz, based on crustacean N and P content measured seasonally over 2 years, and a 10-year record of zooplankton densities. Mean cladoceran N and P contents were 8.7 and 1.2% of dry weight, respectively, while for copepods they were 9.5 and 1.5% of dry weight, respectively. Zooplankton density, and hence PNz and PPz, changed dramatically during the 10 years, concurrent with extreme variations in the lake’s WL. The lowest mean values of PNz and PPz occurred during high WL years and the highest PNz and PPz were during low WL years. PNz and PPz were negatively correlated with the total PN and PP concentrations, respectively, in the lake. The reduction in zooplankton contribution to the particulate N and P during high WL is probably due to higher loading of particulate matter in wet years, causing an increase of PN and PP concentration in the lake, as well as lower densities of zooplankton, caused by higher fish predation pressure, both are a by-product of the large water influx during extreme wet winters.

Keywords

Stoichiometry Copepod Cladoceran N-content P-content Zooplankton N:P 

Notes

Acknowledgments

This study was supported by the Admiral Yohay Ben-Nun Foundation for Marine and Freshwater Sciences Fellowship, and the Bar Ilan University Marine Sciences Fellowship to TR. We thank the researchers and technical staff at the Kinneret Limnological Laboratory: Dr. Ami Nishri for the chemical data, Dr. Werner Eckert for analyses of CHN, Miki Shlichter for database use, and Mina Bizic, Edit Leibovitz, and Sara Chava for their technical help. The chemical analyses were conducted by the Watershed Unit of Mekorot. Funding for the Kinneret monitoring program from which the long-term data were derived was from the Israel Water Authority. Statistical analysis was performed with help from Dr. Rachel S. Levy-Drummer and Dr. Yuri Kamenir from the Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University.

References

  1. Andersen, T. & D. O. Hessen, 1991. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.CrossRefGoogle Scholar
  2. APHA, 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.Google Scholar
  3. Bruce, L. C., D. Hamilton, J. Imberger, G. Gal, M. Gophen, T. Zohary & K. D. Hambright, 2006. A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling 193: 412–436.CrossRefGoogle Scholar
  4. Carrillo, P., I. Reche & L. Cruz-Pizarro, 1996. Quantification of the phosphorus released by zooplankton in an oligotrophic lake (La Caldera, Spain): regulating factors and adjustment to theoretical models. Journal of Plankton Research 18: 1567–1586.CrossRefGoogle Scholar
  5. Carrillo, P., M. Villar-Argaiz & J. M. Medina-Sanchez, 2008. Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse? Microbial Ecology 56: 350–363.CrossRefPubMedGoogle Scholar
  6. Carvalho, L. & A. Kirika, 2003. Changes in shallow lake functioning: response to climate change and nutrient reduction. Hydrobiologia 506–509: 789–796.CrossRefGoogle Scholar
  7. Danger, M., G. Lacroix, S. Ka, E. Ndour, Hadji, D. Corbin & X. Lazzaro, 2009. Food-web structure and functioning of temperate and tropical lakes: a stoichiometric viewpoint. Annales de Limnologie - International Journal of Limnology 45: 11–21.CrossRefGoogle Scholar
  8. Elser, J. J., M. M. Elser, N. A. Mackay & S. R. Carpenter, 1988. Zooplankton-mediated transitions between N- and P-limited algal growth. Limnology and Oceanography 33: 1–14.CrossRefGoogle Scholar
  9. Elser, J. J., T. Andersen, J. S. Baron, A.-K. Bergstrom, M. Jansson, M. Kyle, K. R. Nydick, L. Steger & D. O. Hessen, 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835–837.CrossRefPubMedGoogle Scholar
  10. Gafny, S., A. Gasith & M. Goren, 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinneret, Israel. Journal of Fish Biology 41: 863–871CrossRefGoogle Scholar
  11. Gal, G. & W. Anderson, 2010. A novel approach to detecting a regime shift in a lake ecosystem. Methods in Ecology and Evolution 1: 45–52.CrossRefGoogle Scholar
  12. Gophen, M., 1977. Food and feeding habits of Mesocyclops leuckarti (Claus) in Lake Kinneret (Israel). Freshwater Biology 7: 513–518.CrossRefGoogle Scholar
  13. Gophen, M., 2003. Water quality management in Lake Kinneret (Israel): hydrological and food web perspectives. Journal of Limnology 62(suppl. 1): 91–101.Google Scholar
  14. Gophen, M. & B. Azoulay, 2002. The trophic status of zooplankton communities in Lake Kinneret (Israel). Verhandlungen des Internationalen Verein Limnologie 28: 836–839.Google Scholar
  15. Hadas, O. & T. Berman, 1998. Seasonal abundance and vertical distribution of protozoa (flagellates, ciliates) and bacteria in Lake Kinneret, Israel. Aquatic Microbial Ecology 14: 161–170.CrossRefGoogle Scholar
  16. Hambright, K. D. & J. Shapiro, 1997. The 1993 collapse of the Lake Kinneret bleak fishery. Fisheries Management and Ecology 4: 275–283.CrossRefGoogle Scholar
  17. Hambright, K. D., T. Zohary & W. Eckert, 1997. Potential influence of low water levels on Lake Kinneret: reappraisal and modification of an early hypothesis. Limnologica 27: 147–155.Google Scholar
  18. Hambright, K. D., T. Zohary & H. Güde, 2007. Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography 52: 1018–1025.CrossRefGoogle Scholar
  19. Hart, R. D., L. Stone & T. Berman, 2000. Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnology and Oceanography 45: 350–361.CrossRefGoogle Scholar
  20. Hassett, R. P., B. Cardinale, L. B. Stabler & J. J. Elser, 1997. Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton–phytoplankton interaction. Limnology and Oceanography 42: 648–662.CrossRefGoogle Scholar
  21. Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography 38: 709–724.CrossRefGoogle Scholar
  22. Heinsalu, A., H. Luup, T. Alliksaar, P. Nõges & T. Nõges, 2008. Water level changes in a large shallow lake as reflected by the plankton:periphyton-ratio of sedimentary diatoms. Hydrobiologia 599: 23–30.CrossRefGoogle Scholar
  23. Hessen, D. O., 2006. Determinants of seston C:P-ratio in lakes. Freshwater Biology 51: 1560–1569.CrossRefGoogle Scholar
  24. Hessen, D., T. Andersen & B. Faafeng, 1992. Zooplankton contribution to particulate phosphorus and nitrogen in lakes. Journal of Plankton Research 14: 937–947.CrossRefGoogle Scholar
  25. Hessen, D. O., E. V. Donk & R. Gulati, 2005. Seasonal seston stoichiometry: effects on zooplankton in cyanobacteria-dominated lakes. Journal of Plankton Research 27: 449–460.CrossRefGoogle Scholar
  26. Hessen, D. O., T. C. Jensen, M. Kyle & J. J. Elser, 2007. RNA responses to N- and P-limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Functional Ecology 21: 956–962.CrossRefGoogle Scholar
  27. Hessen, D. O., T. Andersen, S. Larsen, B. L. Skjelkvale & H. A. D. Wit, 2009. Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnology and Oceanography 54: 2520–2528.Google Scholar
  28. Jeppesen, E., M. Meerhoff, K. Holmgren, I. Gonzalez-Bergonzoni, F. Teixeira-De Mello, S. A. J. Declerck, L. De Meester, M. Sondergaard, T. L. Lauridsen, R. Bjerring, J. M. Conde-Porcuna, N. Mazzeo, C. Iglesias, M. Reizenstein, H. J. Malmquist, Z. W. Liu, D. Balayla & X. Lazzaro, 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646: 73–90.CrossRefGoogle Scholar
  29. Lyche, A., T. Andersen, K. Christoffersen, D. O. Hessen, P. H. B. Hansen & A. Klysner, 1996. Mesocosm tracer studies. 1. Zooplankton as sources and sinks in the pelagic phosphorus cycle of a mesotrophic lake. Limnology and Oceanography 41: 460–474.CrossRefGoogle Scholar
  30. Main, T. M., D. R. Dobberfuhl & J. J. Elser, 1997. N:P stoichiometry and ontogeny of crustacean zooplankton: a test of the growth rate hypothesis. Limnology and Oceanography 42: 1474–1478.CrossRefGoogle Scholar
  31. Mccarthy, V. & K. Irvine, 2010. A test of stoichiometry across six Irish lakes of low-moderate nutrient status and contrasting hardness. Journal of Plankton Research 32: 15–29.CrossRefGoogle Scholar
  32. O’reilly, C. M., S. R. Alin, P.-D. Plisnier, A. S. Cohen & B. A. Mckee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.CrossRefPubMedGoogle Scholar
  33. Ostrovsky, I. & P. Walline, 1999. Growth and production of the dominant pelagic fish, Acanthobrama terraesanctae, in subtropical Lake Kinneret, Israel. Journal of Fish Biology 54: 18–32.CrossRefGoogle Scholar
  34. Ostrovsky, I. & P. Walline, 2000. Multiannual changes in population structure and body condition of the pelagic fish Acanthobrama terraesanctae in Lake Kinneret (Israel) in relation to food sources. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 27: 1–5.Google Scholar
  35. Roelke, D. L., T. Zohary, K. D. Hambright & J. V. Montoya, 2007. Alternative states in the phytoplankton of Lake Kinneret, Israel (Sea of Galilee). Freshwater Biology 52: 399–411.CrossRefGoogle Scholar
  36. Serruya, C., 1978. Lake Kinneret. Dr. Junk Publishers, The Hague, Amsterdam.Google Scholar
  37. Smith, S. V., S. Serruya, Y. Geifman & T. Berman, 1989. Internal sources and sinks of water P, N, Ca and Cl in Lake Kinneret, Israel. Limnology and Oceanography 34: 1202–1213.CrossRefGoogle Scholar
  38. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, New Jersey.Google Scholar
  39. Sterner, R. W., J. H. Schampel, K. L. Schulz, A. E. Galford & J. J. Elser, 2000. Joint variation of zooplankton and seston stoichiometry in lakes and reservoirs. Verhandlungen des Internationalen Verein Limnologie 27: 1–6.Google Scholar
  40. Urabe, J., M. Nakanishi & K. Kawabata, 1995. Contribution of metazoan plankton to the cycling of nitrogen and phosphorus in Lake Biwa. Limnology and Oceanography 40: 232–241.CrossRefGoogle Scholar
  41. Walve, J. & U. Larsson, 1999. Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. Journal of Plankton Research 21: 2309–2321.CrossRefGoogle Scholar
  42. Wantzen, K. M., F. A. Machado, H. B. M. Voss & W. J. Junk, 2002. Floodpulse-induced isotopic changes in fish of the Pantanal wetland, Brazil. Aquatic Sciences – Research Across Boundaries 64: 239–251.Google Scholar
  43. Wantzen, K., K.-O. Rothhaupt, M. Mörtl, M. Cantonati, L. G. Tóth & P. Fischer, 2008. Ecological effects of water-level fluctuations in lakes: an urgent issue. Hydrobiologia 613: 1–4.CrossRefGoogle Scholar
  44. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  45. Zohary, T., 2004. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biology 49: 1355–1371.CrossRefGoogle Scholar
  46. Zohary, T., J. Erez, M. Gophen, I. Berman-Frank & M. Stiller, 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnology and Oceanography 39: 1030–1043.CrossRefGoogle Scholar
  47. Zohary, T., J. Padisák & L. Naselli-Flores, 2010. Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tamar Rachamim
    • 1
    • 2
  • Noga Stambler
    • 1
    • 3
  • Tamar Zohary
    • 2
  • Ilana Berman-Frank
    • 1
  • Gideon Gal
    • 2
  1. 1.The Mina and Everard Goodman Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael
  2. 2.Kinneret Limnological LaboratoryIsrael Oceanographic and Limnological ResearchMigdalIsrael
  3. 3.Department of Geography and EnvironmentBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations