Skip to main content

Advertisement

Log in

Characterization of paralytic shellfish toxins in seawater and sardines (Sardina pilchardus) during blooms of Gymnodinium catenatum

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The re-emergence of Gymnodinum catenatum blooms after a 10 year hiatus of absence initiated the present investigation. This study aims to evaluate the exposure of small pelagic fishes to paralytic shellfish toxins (PST) during blooms of G. catenatum. Sardines (Sardina pilchardus) were selected as a representative fish species. In order to assess toxin availability to fish, both intracellular PSTs (toxin retained within the algal cells) and extracellular PSTs (toxin found in seawater outside algal cells) were quantified, as well as toxin levels within three fish tissue matrices (viscera, muscle and brain). During the study period, the highest cell densities of G. catenatum reached 2.5 × 104 cells l−1 and intracellular PST levels ranged from 3.4 to 398 ng STXeq l−1 as detected via an enzyme linked immunosorbent assay (ELISA). Measurable extracellular PSTs were also detected in seawater (0.2–1.1 μg STXeq l−1) for the first time in Atlantic waters. The PST profile in G. catenatum was determined via high performance liquid chromatography with fluorescence detection (HPLC-FLD) and consisted mostly of sulfocarbamoyl (C1+2, B1) and decarbamoyl (dcSTX, dcGTX2+3, dcNEO) toxins. The observed profile was similar to that reported previously in G. catenatum blooms in this region before the 10-year hiatus. Sardines, planktivorous fish that ingest a large number of phytoplankton cells, were found to contain PSTs in the viscera, reaching a maximum of 531 μg STXeq kg−1. PSTs were not detected in corresponding muscle or brain tissues. The PST profile characterized in sardine samples consisted of the same sulfocarbamoyl and decarbamoyl toxins found in the algal prey with minor differences in relative abundance of each toxin. Overall, the data suggest that significant biotransformation of PSTs does not occur in sardines. Therefore, planktivorous fish may be a good tracer for the occurrence of offshore G. catenatum blooms and the associated PSTs produced by these algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, J. A., D. D. Seaton, J. B. Buchanan & M. R. Longbottom, 1968. Biological observations associated with the toxic phytoplankton bloom off the east coast. Nature 220: 22–24.

    Article  Google Scholar 

  • Batoréu, M. C. C., E. Dias, P. Pereira & S. Franca, 2005. Risk of human exposure to paralytic toxins of algal origin. Environmental Toxicology and Pharmacology 19: 401–406.

    Article  Google Scholar 

  • Bricelj, V. M. & S. E. Shumway, 1998. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation. Reviews in Fisheries Science 6: 315–383.

    Article  CAS  Google Scholar 

  • Bricelj, V. M., A. D. Cembella, D. Laby, S. E. Shumway & T. L. Cucci, 1996. Comparative physiological and behavioral responses to PSP toxins in two bivalve mollusks, the softshell clam, Mya arenaria, and surfclam, Spisula solidissima. In Yasumoto, T., Y. Oshima & Y. Fukuyo (eds), Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, Paris: 405–408.

    Google Scholar 

  • Bricelj, V. M., L. Connell, K. Konoki, S. P. MacQuarrie, T. Scheuer, W. A. Catterall & V. L. Trainer, 2005. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434: 763–767.

    Article  CAS  PubMed  Google Scholar 

  • Castonguay, M., M. Levasseur, J.-L. Beaulieu, F. Grégoire, S. Michaud, E. Bonneau & S. S. Bates, 1997. Accumulation of PSP toxins in Atlantic mackerel: seasonal and ontogenic variations. Journal of Fish Biology 50: 1203–1213.

    Article  CAS  Google Scholar 

  • Cembella, A. D., M. A. Quilliam, N. I. Lewis, A. G. Bauder, C. D. Aversano, K. Thomas, J. Jellett & R. R. Cusak, 2002. The toxigenic dinoflagellate Alexandrium tamarense as the probable cause of mortality of caged samon in Nova Scotia. Harmful Algae 1: 313–325.

    Article  CAS  Google Scholar 

  • Costa, P. R. & S. Garrido, 2004. Domoic acid accumulation in the sardine Sardina pilchardus and its relationship to Pseudo-nitzschia diatom ingestion. Marine Ecology Progress Series 284: 261–268.

    Article  CAS  Google Scholar 

  • Franca, S. & J. F. Almeida, 1989. Paralytic shellfish poisons in bivalve molluscs on the Portuguese coast caused by a bloom of the dinoflagellate Gymnodinium catenatum. In Okaichi, T., D. M. Anderson & T. Nemoto (eds), Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York: 93–96.

    Google Scholar 

  • Franca, S., P. Alvito, I. Sousa, A. Gago, J. A. Rodríguez-Vásquez, J. M. Leão, M. Comesaña, P. Thibault, P. Burdaspal, J. Bustos & T. Legarda, 1996. The toxin profile of some PSP toxin producing dinoflagellates occurring in Portuguese coastal waters as determined by alternative analytical methods. In Yasumoto, T., Y. Oshima & Y. Fukuyo (eds), Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, Paris: 519–522.

    Google Scholar 

  • Galimany, E., I. Sunila, H. Hégart, M. Ramón & G. H. Wikfors, 2008. Experimental exposure of blue mussel (Mytilus edulis. L.) to the toxic dinoflagellate Alexandrium fundyense: histopathology, immune response, and recovery. Harmful Algae 7: 702–711.

    Article  CAS  Google Scholar 

  • Garcia, C., M. Lagos, D. Truan, K. Lattes, O. Véjar, B. Chamorro, V. Iglésias, D. Andrinolo & N. Lagos, 2005. Human intoxication with paralytic shellfish toxins: clinical parameters and toxin analysis in plasma and urine. Biological Research 38: 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Gárrate-Lizárraga, I., J. J. Bustillos-Guzmán, L. Morquecho, C. J. Band-Schmidt, R. Alonso-Rodríguez, K. Erler, B. Lukas, A. Reyes-Salinas & D. T. Góngora-González, 2005. Comparative paralytic shellfish toxin profiles in the strains of Gymnodinium catenatum Graham from the Gulf of California, Mexico. Marine Pollution Bulletin 50: 211–217.

    Article  Google Scholar 

  • Genenah, A. A. & Y. Shimizu, 1981. Specific toxicity of paralytic shellfish poisons. Journal of Agriculture and Food Chemistry 29: 1289–1291.

    Article  CAS  Google Scholar 

  • Geraci, J. R., D. M. Anderson, R. J. Timperi, D. J. St Aubin, G. A. Early, J. H. Prescott & C. A. Mayo, 1989. Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxin. Canadian Journal of Fisheries and Aquatic Sciences 46: 1895–1898.

    Article  Google Scholar 

  • Gessner, B. D. & J. P. Middaugh, 1995. Paralytic shellfish poisoning in Alaska: a 20-year retrospective analysis. American Journal of Epidemiology 141: 760–766.

    Google Scholar 

  • Hallegraeff, G. M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79–99.

    Google Scholar 

  • Haya, K., J. L. Martin, B. A. Waiwood, L. E. Burridge, J. M. Hungerford & V. Zitko, 1990. Identification of paralytic shellfish toxins in mackerel from southwest Bay of Fundy, Canada. In Graneli, E., B. Sundstrom, L. Edler & D. M. Anderson (eds), Toxic Marine Phytoplankton. Elsevier, New York: 350–355.

    Google Scholar 

  • IPCS, 1984. International programme on chemical safety. Aquatic (Marine and Freshwater) biotoxins. Environmental Health Criteria 37. World Health Organization. ISBN 92 4 154097 4.

  • Jester, R. J., K. A. Baugh & K. A. Lefebvre, 2009. Presence of Alexandrium catenella and paralytic shellfish toxins in finfish, shellfsh and rock crabs in Monterey Bay, California, USA. Marine Biology 156: 493–504.

    Article  CAS  Google Scholar 

  • Lagos, M. & D. Andrinolo, 2000. Paralytic shellfish poisoning (PSP): toxicology and kinetics. In Botana, L. M. (ed.), Seafood and Freshwater Toxins. Marcel Dekker, New York: 203–215.

    Google Scholar 

  • Landsberg, J. H., 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113–390.

    Article  Google Scholar 

  • Lawrence, J. F., B. Niedzwiadek & C. Menard, 2005. Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: collaborative study. Journal of AOAC International 88: 1714–1732.

    CAS  PubMed  Google Scholar 

  • Lefebvre, K. A., V. L. Trainer & N. L. Scholz, 2004. Morphological abnormalities and sensorimotor deficits in larval fish exposed to dissolved saxitoxin. Aquatic Toxicology 66: 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, K. A., N. E. Elder, P. K. Hershberger, V. L. Trainer, C. M. Stehr & N. L. Scholz, 2005. Dissolved saxitoxin causes transient inhibition of sensorimotor function in larval Pacific herring (Clupea harengus pallasi). Marine Biology 147: 1393–1402.

    Article  CAS  Google Scholar 

  • Lefebvre, K. A., B. Bill, A. Erickson, K. Baugh, L. O’Rourke, P. R. Costa, S. Nance & V. L. Trianer, 2008. Characterization of dissolved and particulate saxitoxin levels in both field and cultured Alexandrium samples from Sequim Bay, WA. Marine Drugs 6: 103–116.

    CAS  PubMed  Google Scholar 

  • Llewellyn, L. E., 2006. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Natural Products Reports 23: 200–222.

    Article  CAS  Google Scholar 

  • Moita, T. M., P. B. Oliveira, J. C. Mendes & A. S. Palma, 2003. Distribution of chlorophyll a and Gymnodinium catenatum associated with coastal upwelling plumes off central Portugal. Acta Oecologica 24: S125–S132.

    Article  Google Scholar 

  • Moita, M. T., S. Palma, P. B. Oliveira, T. Vidal, A. Silva & M. G. Vilarinho, 2006. The return of Gymnodinium catenatum after 10 years: bloom initiation and transport off the Portuguese coast. 12th International Conference on Harmful Algae, Copenhagen, Denmark, Abstract book: 242.

  • Montoya, N. G., R. Akselman, J. Franco & J. I. Carreto, 1996. Paralytic shellfish toxins and mackerel (Scomber japonicus) mortality in the Argentine Sea. In Yasumoto, T., Y. Oshima & Y. Fukuyo (eds), Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, Paris: 417–420.

    Google Scholar 

  • Montoya, N. G., M. I. Reyero, R. Akselman, J. M. Franco & J. I. Carreto, 1998. Paralytic shellfish toxins in the anchovy Engraulis anchiota from the Argentinian coast. In Reguera, B., J. Blanco, M. L. Fernández & T. Wyatt (eds), Harmful Algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago de Compostela: 72–73.

    Google Scholar 

  • Mortensen, A. M., 1985. Massive fish mortalities in the Faroe Islands caused by a Gonyaulax excavata red tide. In Anderson, D. M., A. W. White & D. G. Baden (eds), Toxic Dinoflagellates. Elsevier, New York: 163–170.

    Google Scholar 

  • Oshima, Y., 1995. Postcolumn derivatization liquid-chromatography method for paralytic shellfish toxins. Journal of AOAC International 78: 528–532.

    CAS  Google Scholar 

  • Quilliam, M. A., 2007. Supplemental Information for PSP Toxin Certified Reference Materials. National Research Council Certified Reference Materials Program. Institute for Marine Biosciences, Canada.

    Google Scholar 

  • Ré, P., R. C. Silva, E. Cunha, A. Farinha, I. Meneses & T. Moita, 1990. Sardine spawing off Portugal. Boletim do Instituto Nacional de Investigação das Pescas 15: 31–44.

    Google Scholar 

  • Reyero, M., E. Cacho, A. Martínez, J. Vázquez, A. Marina, S. Fraga & J. M. Franco, 1999. Evidence of saxitoxin derivatives as causative agents in the 1997 mass mortality of monk seals in the Cape Blanc Peninsula. Natural Toxins 7: 311–315.

    Article  CAS  PubMed  Google Scholar 

  • Robineau, B., J. A. Gagné, L. Fortier & A. D. Cembella, 1991. Potential impact of a toxic dinoflagellate (Alexandrium excavatum) bloom on survival of fish and crustacean larvae. Marine Biology 108: 293–301.

    Article  Google Scholar 

  • Sampayo, M. A. M., S. Rodrigues, M. J. Botelho & P. Vale, 2001. Two confirmed cases of human intoxication by marine biotoxins in Portugal. In Hallegraeff, G. M., S. I. Blackburn, C. J. Bolch & R. J. Lewis (eds), Harmful Algal Blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris: 436–437.

    Google Scholar 

  • Samson, J. C., S. E. Shumway & J. S. Weis, 2008. Effects of the toxic dinoflagellate, Alexandrium fundyense on three species of larval fish: a food-chain approach. Journal Fish Biology 72: 168–188.

    Article  CAS  Google Scholar 

  • Santos, A. M. P., A. Chícharo, A. Santos, T. Moita, P. B. Oliveira, A. Peliz & P. Ré, 2007. Physical–biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Progress in Oceanography 74: 192–209.

    Article  Google Scholar 

  • Shimizu, Y., 2000. Paralytic shellfish poisoning. Chemistry and mechanism of action. In Botana, L. M. (ed.), Seafood and Freshwater Toxins. Marcel Dekker, New York: 151–172.

    Google Scholar 

  • Shumway, S. E., 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society 21: 65–104.

    Article  Google Scholar 

  • Silva, M. A., 1999. Diet of dolphins, Delphinus delphis, off the Portuguese continental coast. Journal of the Marine Biological Association of the United Kingdom 79: 531–540.

    Article  Google Scholar 

  • Smayda, T. J., 1997. What is a bloom? A commentary. Limnology and Oceanography 42: 1132–1136.

    Article  Google Scholar 

  • Utermöhl, N., 1931. Neue wege in der quantitativen erfassung des planktons. Verhandlungen - Internationale Vereinigung fur Theoretische und Angewandte Limnologie 5: 567–596.

    Google Scholar 

  • White, A. W., 1977. Dinoflagellate toxins as a probable cause of an atlantic herring (Clupea harengus harengus) kill, and pteropods as apparent vector. Journal of the Fisheries Research Board of Canada 34: 2421–2424.

    CAS  Google Scholar 

  • White, A. W., 1981. Sensitivity of marine fishes to toxins from the red-tide dinoflagellate Gonyaulax excavata and implications for fish kills. Marine Biology 65: 255–260.

    Article  Google Scholar 

  • White, A. W. 1984. Paralytic shellfish toxins and finfish. In Ragelis, E. P. (ed), Seafood Toxins. ACS Symposium Series 262: 171–180.

  • Zwolinski, J., Y. Stratoudakis & E. Soares, 2001. Intra-annual variation in the batch fecundity of sardine off Portugal. Journal of Fish Biology 58: 1633–1645.

    Article  Google Scholar 

Download references

Acknowledgments

Authors greatly appreciated the helpful assistance of Ms Bich-Thuy Eberhart (Seattle-NOAA) in ELISA determinations, and Ms Lourdes Dias (Lisbon-IPIMAR) for seawater sampling. The Portuguese Foundation for Science and Technology supported this study through the research grant PTDC/MAR/78997/2006 and post-doctoral grant to P.R. Costa, grant number: SFRH/BPD/27002/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Reis Costa.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, P.R., Botelho, M.J. & Lefebvre, K.A. Characterization of paralytic shellfish toxins in seawater and sardines (Sardina pilchardus) during blooms of Gymnodinium catenatum . Hydrobiologia 655, 89–97 (2010). https://doi.org/10.1007/s10750-010-0406-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0406-5

Keywords